Plant-associated bacteria, including pathogens, recognise host-derived signals to activate specific responses. The genome of Pseudomonas syringae pv. actinidiae (Psa), the aetiological agent of bacterial canker of kiwifruit, encodes for three putative LuxR-like receptors. Proteins of this family are usually involved in the quorum sensing system, through the perception of autoinducers (AHLs) produced by a cognate LuxI. However, Psa does not produce AHLs according to the lack of LuxI-encoding gene. It has been proposed that the so-called LuxR solos may be involved in the perception of environmental stimuli. We thus hypothesised that Psa LuxR-like receptors could be involved in host-derived signal sensing.Psa virulence traits, i.e., biofilm formation, motility and endophytic colonisation, were stimulated by growing the pathogen in host plant extracts, but not in non-host plant extracts or rich medium. Moreover, the phenotypic analyses of Psa mutant strains lacking the LuxR solo-encoding genes, demonstrated that PsaR2 plays a major role in host recognition and induction of virulence responses. The heterologous expression of PsaR2, followed by affinity chromatography and fraction activity assessment, confirmed the specific recognition of plant-derived components by this sensor. Overall, these data provide a deeper understanding of the regulation of Psa virulence through interkingdom communication, which represents a interesting target for the development of tolerant/resistant genotypes or innovative control strategies.

Host-specific signal perception by PsaR2 LuxR solo induces Pseudomonas syringae pv. actinidiae virulence traits

Vandelle, Elodie;Polverari, Annalisa;
2022-01-01

Abstract

Plant-associated bacteria, including pathogens, recognise host-derived signals to activate specific responses. The genome of Pseudomonas syringae pv. actinidiae (Psa), the aetiological agent of bacterial canker of kiwifruit, encodes for three putative LuxR-like receptors. Proteins of this family are usually involved in the quorum sensing system, through the perception of autoinducers (AHLs) produced by a cognate LuxI. However, Psa does not produce AHLs according to the lack of LuxI-encoding gene. It has been proposed that the so-called LuxR solos may be involved in the perception of environmental stimuli. We thus hypothesised that Psa LuxR-like receptors could be involved in host-derived signal sensing.Psa virulence traits, i.e., biofilm formation, motility and endophytic colonisation, were stimulated by growing the pathogen in host plant extracts, but not in non-host plant extracts or rich medium. Moreover, the phenotypic analyses of Psa mutant strains lacking the LuxR solo-encoding genes, demonstrated that PsaR2 plays a major role in host recognition and induction of virulence responses. The heterologous expression of PsaR2, followed by affinity chromatography and fraction activity assessment, confirmed the specific recognition of plant-derived components by this sensor. Overall, these data provide a deeper understanding of the regulation of Psa virulence through interkingdom communication, which represents a interesting target for the development of tolerant/resistant genotypes or innovative control strategies.
2022
Biofilm
Interkingdom communication
Plant-pathogen interactions
Plant-pathogen interactions
Bacterial canker of kiwifruit
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11562/1083748
Citazioni
  • ???jsp.display-item.citation.pmc??? 0
  • Scopus 5
  • ???jsp.display-item.citation.isi??? 4
social impact