The coil/helix transition of a synthetic, branched-chain polymeric polypeptide (poly (Lys(Glu(1)-DL-Ala(3))EAK), 50-Lys residues long in the backbone, as a function of increasing molarities of methanol in solution, is here studied by both, circular dichroism (CD) and capillary zone electrophoresis. CD spectra showed that, at 75% v/v methanol, the transition from random coil to fully helical structure was obtained, in a pH 1.1 HCl solution in the presence of 20 mm NaCl. CZE studies, run in parallel, exhibited the classical unfolding to folding sigmoidal transition, with mid-point at 60% v/v methanol concentration, plateauing at ca. 80% v/v organic solvent. Surprisingly, though, such unfolding to folding transition was accompanied by an expansion, rather than a contraction, of the resulting ordered polypeptide. As the charge of the polypeptide (a pure polycation at a pH of 2.1 in CZE) was kept rigorously constant, a plot of the radius of the polymer along the sigmoidal transition clearly showed that the radius of gyration of the helical, structured polypeptide was in fact larger than that of the random coil. Such results were confirmed by molecular dynamics simulations, which indicated that the dimensions of such polypeptide, in alpha-helix configuration, were 8.5 nm (in length) and 3.2 nm (in diameter), whereas those of the corresponding random coil were 7.2 nm (in length) and 5.1 nm (length of shorter axis). It would thus appear that the randomized structure assumes the shape of a more compact object, roughly resembling a "rugby ball".

Monitoring folding transitions of synthetic, branched-chain polypeptides by capillary zone electrophoresis

Verzola, B.;Perduca, M.;Righetti, P. G.
2003-01-01

Abstract

The coil/helix transition of a synthetic, branched-chain polymeric polypeptide (poly (Lys(Glu(1)-DL-Ala(3))EAK), 50-Lys residues long in the backbone, as a function of increasing molarities of methanol in solution, is here studied by both, circular dichroism (CD) and capillary zone electrophoresis. CD spectra showed that, at 75% v/v methanol, the transition from random coil to fully helical structure was obtained, in a pH 1.1 HCl solution in the presence of 20 mm NaCl. CZE studies, run in parallel, exhibited the classical unfolding to folding sigmoidal transition, with mid-point at 60% v/v methanol concentration, plateauing at ca. 80% v/v organic solvent. Surprisingly, though, such unfolding to folding transition was accompanied by an expansion, rather than a contraction, of the resulting ordered polypeptide. As the charge of the polypeptide (a pure polycation at a pH of 2.1 in CZE) was kept rigorously constant, a plot of the radius of the polymer along the sigmoidal transition clearly showed that the radius of gyration of the helical, structured polypeptide was in fact larger than that of the random coil. Such results were confirmed by molecular dynamics simulations, which indicated that the dimensions of such polypeptide, in alpha-helix configuration, were 8.5 nm (in length) and 3.2 nm (in diameter), whereas those of the corresponding random coil were 7.2 nm (in length) and 5.1 nm (length of shorter axis). It would thus appear that the randomized structure assumes the shape of a more compact object, roughly resembling a "rugby ball".
capillary electrophoresis
protein folding
protein unfolding
File in questo prodotto:
File Dimensione Formato  
a11 Polipeptide Electrophoresi 2003.pdf

solo utenti autorizzati

Descrizione: Monitoring folding transitions of synthetic, branched-chain polypeptides by capillary zone electrophoresis
Tipologia: Documento in Post-print
Licenza: Accesso ristretto
Dimensione 213.73 kB
Formato Adobe PDF
213.73 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11562/1082486
Citazioni
  • ???jsp.display-item.citation.pmc??? 0
  • Scopus 14
  • ???jsp.display-item.citation.isi??? 13
social impact