Purpose: Heart rate variability (HRV) estimates the autonomic nervous system (ANS) influence on the heart and appears sex-specific. Sensory afferents exhibit sex-specificity; although, it is unknown if Capsaicin, an agonist for transient receptor potential vanilloid channel-1 (TRPV1), alters cardiac ANS activity in a sex-dependent manner, which could be important given the predictive nature of HRV on risk of developing hypertension. Thus, we explored if there was sex-specificity in the effect of capsaicin on estimated cardiac ANS activity. Methods: HRV was measured in 38 young males (M: n = 25) and females (F: n = 13), in a blinded-crossover design, after acute ingestion of placebo or capsaicin. Resting HR, RR-interval, root-mean-square of successive differences (RMSSD), natural log-transformed RMSSD (LnRMSSD), standard deviation of n-n intervals (SDNN), number of pairs of successive n-n intervals differing by > 50 ms (NN50), and percent NN50 (PNN50) were obtained using standard techniques. Results: Significant sex differences were observed in mean HR (M: 59 ± 9.3 vs. F: 65 ± 12 beats/min, p = 0.036, η2 = 0.098), minimum HR (M: 47 ± 8.3 vs. F: 56 ± 12 beats/min, p = 0.014, η2 = 0.124), and NN50 (M: 177 ± 143 vs. F: 29 ± 17, p < 0.001, η2 = 0.249). There was a significant interaction of sex*treatment (p = 0.02, η2 = 0.027) for RMSSD, where males increased (78 ± 55 vs. 91 ± 64 ms), and females decreased (105 ± 83 vs. 76 ± 43 ms), placebo vs. capsaicin. Conclusion: This controlled study recapitulates sex differences in HR and HRV, but revealed a sexual dimorphism in the parasympathetic response to capsaicin, perhaps due to differing TRPV1-afferent sensitivity, highlighting a potential mechanism for differential regulation of hemodynamics, and CVD risk, and should be considered in future studies.
Sex differences in estimates of cardiac autonomic function using heart rate variability: effects of dietary capsaicin
Giuriato, Gaia;Venturelli, Massimo;
2023-01-01
Abstract
Purpose: Heart rate variability (HRV) estimates the autonomic nervous system (ANS) influence on the heart and appears sex-specific. Sensory afferents exhibit sex-specificity; although, it is unknown if Capsaicin, an agonist for transient receptor potential vanilloid channel-1 (TRPV1), alters cardiac ANS activity in a sex-dependent manner, which could be important given the predictive nature of HRV on risk of developing hypertension. Thus, we explored if there was sex-specificity in the effect of capsaicin on estimated cardiac ANS activity. Methods: HRV was measured in 38 young males (M: n = 25) and females (F: n = 13), in a blinded-crossover design, after acute ingestion of placebo or capsaicin. Resting HR, RR-interval, root-mean-square of successive differences (RMSSD), natural log-transformed RMSSD (LnRMSSD), standard deviation of n-n intervals (SDNN), number of pairs of successive n-n intervals differing by > 50 ms (NN50), and percent NN50 (PNN50) were obtained using standard techniques. Results: Significant sex differences were observed in mean HR (M: 59 ± 9.3 vs. F: 65 ± 12 beats/min, p = 0.036, η2 = 0.098), minimum HR (M: 47 ± 8.3 vs. F: 56 ± 12 beats/min, p = 0.014, η2 = 0.124), and NN50 (M: 177 ± 143 vs. F: 29 ± 17, p < 0.001, η2 = 0.249). There was a significant interaction of sex*treatment (p = 0.02, η2 = 0.027) for RMSSD, where males increased (78 ± 55 vs. 91 ± 64 ms), and females decreased (105 ± 83 vs. 76 ± 43 ms), placebo vs. capsaicin. Conclusion: This controlled study recapitulates sex differences in HR and HRV, but revealed a sexual dimorphism in the parasympathetic response to capsaicin, perhaps due to differing TRPV1-afferent sensitivity, highlighting a potential mechanism for differential regulation of hemodynamics, and CVD risk, and should be considered in future studies.File | Dimensione | Formato | |
---|---|---|---|
s00421-023-05136-0.pdf
solo utenti autorizzati
Tipologia:
Versione dell'editore
Licenza:
Accesso ristretto
Dimensione
794.36 kB
Formato
Adobe PDF
|
794.36 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.