We propose a novel computational procedure for quadratic hedging in high-dimensional incomplete markets, covering mean-variance hedging and local risk minimization. Starting from the observation that both quadratic approaches can be treated from the point of view of backward stochastic differential equations (BSDEs), we (recursively) apply a deep learning-based BSDE solver to compute the entire optimal hedging strategies paths. This allows us to overcome the curse of dimensionality, extending the scope of applicability of quadratic hedging in high dimension. We test our approach with a classic Heston model and with a multiasset and multifactor generalization thereof, showing that this leads to high levels of accuracy.
Deep Quadratic Hedging
Alessandro Gnoatto
;Silvia Lavagnini;Athena Picarelli
In corso di stampa
Abstract
We propose a novel computational procedure for quadratic hedging in high-dimensional incomplete markets, covering mean-variance hedging and local risk minimization. Starting from the observation that both quadratic approaches can be treated from the point of view of backward stochastic differential equations (BSDEs), we (recursively) apply a deep learning-based BSDE solver to compute the entire optimal hedging strategies paths. This allows us to overcome the curse of dimensionality, extending the scope of applicability of quadratic hedging in high dimension. We test our approach with a classic Heston model and with a multiasset and multifactor generalization thereof, showing that this leads to high levels of accuracy.File | Dimensione | Formato | |
---|---|---|---|
DeepQuadraticHedgingARxiv.pdf
accesso aperto
Licenza:
Creative commons
Dimensione
1.71 MB
Formato
Adobe PDF
|
1.71 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.