We propose a novel computational procedure for quadratic hedging in high-dimensional incomplete markets, covering mean-variance hedging and local risk minimization. Starting from the observation that both quadratic approaches can be treated from the point of view of backward stochastic differential equations (BSDEs), we (recursively) apply a deep learning-based BSDE solver to compute the entire optimal hedging strategies paths. This allows us to overcome the curse of dimensionality, extending the scope of applicability of quadratic hedging in high dimension. We test our approach with a classic Heston model and with a multiasset and multifactor generalization thereof, showing that this leads to high levels of accuracy.

Deep Quadratic Hedging

Alessandro Gnoatto
;
Silvia Lavagnini;Athena Picarelli
In corso di stampa

Abstract

We propose a novel computational procedure for quadratic hedging in high-dimensional incomplete markets, covering mean-variance hedging and local risk minimization. Starting from the observation that both quadratic approaches can be treated from the point of view of backward stochastic differential equations (BSDEs), we (recursively) apply a deep learning-based BSDE solver to compute the entire optimal hedging strategies paths. This allows us to overcome the curse of dimensionality, extending the scope of applicability of quadratic hedging in high dimension. We test our approach with a classic Heston model and with a multiasset and multifactor generalization thereof, showing that this leads to high levels of accuracy.
In corso di stampa
Deep hedging
Deep BSDE solver
Mean-variance hedging
Local risk minimization
Multidimensional Heston model
File in questo prodotto:
File Dimensione Formato  
DeepQuadraticHedgingARxiv.pdf

accesso aperto

Licenza: Creative commons
Dimensione 1.71 MB
Formato Adobe PDF
1.71 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11562/1081901
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact