Despite current advances in perioperative care, intraoperative myocardial protection during cardiac surgery has not kept the same pace. High potassium cardioplegic solutions were introduced in the 1950s, and in the early 1960s they were soon recognized as harmful. Since that time, surgeons have minimized many of the adverse effects by lowering the temperature of the heart, lowering K+ concentration, reducing contact K+ time, changing the vehicle from a crystalloid solution to whole-blood, adding many pharmacological protectants and modifying reperfusion conditions. Despite these attempts, high potassium remains a suboptimalway to arrest the heart. We briefly review the historical advances and failures of finding alternatives to high potassium, the drawbacks of a prolonged depolarized membrane, altered Ca2+ intracellular circuits and heterogeneity in atrial-ventricular K+ repolarization during reanimation. Many of these untoward effects may be alleviated by a polarized membrane, and we will discuss the basic science and clinical experience from a number of institutions trialling different alternatives, and our institution with a non-depolarizing adenosine, lidocaine and magnesium (ALM) cardioplegia. The future of polarized arrest is an exciting one and may play an important role in treating the next generation of patients who are older, and sicker with multiple comorbidities and require more complex operations with prolonged cross-clamping times.

Cardioplegia between Evolution and Revolution: From Depolarized to Polarized Cardiac Arrest in Adult Cardiac Surgery

Francica, Alessandra
;
Tonelli, Filippo;Rossetti, Cecilia;Tropea, Ilaria;Luciani, Giovanni Battista;Faggian, Giuseppe;Onorati, Francesco
2021-01-01

Abstract

Despite current advances in perioperative care, intraoperative myocardial protection during cardiac surgery has not kept the same pace. High potassium cardioplegic solutions were introduced in the 1950s, and in the early 1960s they were soon recognized as harmful. Since that time, surgeons have minimized many of the adverse effects by lowering the temperature of the heart, lowering K+ concentration, reducing contact K+ time, changing the vehicle from a crystalloid solution to whole-blood, adding many pharmacological protectants and modifying reperfusion conditions. Despite these attempts, high potassium remains a suboptimalway to arrest the heart. We briefly review the historical advances and failures of finding alternatives to high potassium, the drawbacks of a prolonged depolarized membrane, altered Ca2+ intracellular circuits and heterogeneity in atrial-ventricular K+ repolarization during reanimation. Many of these untoward effects may be alleviated by a polarized membrane, and we will discuss the basic science and clinical experience from a number of institutions trialling different alternatives, and our institution with a non-depolarizing adenosine, lidocaine and magnesium (ALM) cardioplegia. The future of polarized arrest is an exciting one and may play an important role in treating the next generation of patients who are older, and sicker with multiple comorbidities and require more complex operations with prolonged cross-clamping times.
2021
adenosine-lidocaine-magnesium
myocardial protection
polarizing cardioplegia
File in questo prodotto:
File Dimensione Formato  
jcm-10-04485.pdf

accesso aperto

Tipologia: Versione dell'editore
Licenza: Creative commons
Dimensione 963.59 kB
Formato Adobe PDF
963.59 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11562/1079794
Citazioni
  • ???jsp.display-item.citation.pmc??? 7
  • Scopus 11
  • ???jsp.display-item.citation.isi??? 10
social impact