Nanoconstructs intended to be used as biomedical tool must be assessed for their capability to cross biological barriers. However, studying in vivo the permeability of biological barriers to nanoparticles is quite difficult due to the many structural and functional factors involved. Therefore, the in vitro modeling of biological barriers -2D cell monocultures, 2D/3D cell co-cultures, microfluidic devices- is gaining more and more relevance in nanomedical research. Microscopy techniques play a crucial role in these studies, as they allow both visualizing nanoparticles inside the biological barrier and evaluating their impact on the barrier components. This paper provides an overview of the various microscopical approaches used to investigate nanoparticle translocation through in vitro biological barrier models. The high number of scientific articles reported highlights the great contribution of the morphological and histochemical approach to the knowledge of the dynamic interactions between nanoconstructs and the living environment.

Assessing the interactions between nanoparticles and biological barriers in vitro: a new challenge for microscopy techniques in nanomedicine

Carton, Flavia;Malatesta, Manuela
2022

Abstract

Nanoconstructs intended to be used as biomedical tool must be assessed for their capability to cross biological barriers. However, studying in vivo the permeability of biological barriers to nanoparticles is quite difficult due to the many structural and functional factors involved. Therefore, the in vitro modeling of biological barriers -2D cell monocultures, 2D/3D cell co-cultures, microfluidic devices- is gaining more and more relevance in nanomedical research. Microscopy techniques play a crucial role in these studies, as they allow both visualizing nanoparticles inside the biological barrier and evaluating their impact on the barrier components. This paper provides an overview of the various microscopical approaches used to investigate nanoparticle translocation through in vitro biological barrier models. The high number of scientific articles reported highlights the great contribution of the morphological and histochemical approach to the knowledge of the dynamic interactions between nanoconstructs and the living environment.
nanoconstructs
cell culture
organoid
microfluidics
bioreactor
fluorescence microscopy
electron microscopy
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11562/1079189
Citazioni
  • ???jsp.display-item.citation.pmc??? 0
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact