Extracellular HIV-1 Tat protein (0.1-100 ng/ml) induced a rapid (peak at 30 min) increase in the Ser133 phosphorylation levels of the transcription factor CREB in serum-starved Jurkat cells, as revealed by Western blot and indirect immunofluorescence analyses. Nuclear cAMP-responsive element (CRE) binding activity in electrophoretic mobility shift assays was constitutive in unstimulated Jurkat cells, showing only a small increase upon Tat treatment. However, transient transfection experiments performed with various chloramphenicol acetyl-transferase (CAT) constructs showed that Tat produced a fourfold induction of CAT activity only in the presence of a CRE-dependent CAT construct. Moreover, the use of plasmids encoding for GAL4-CREB fusion proteins demonstrated that Tat induction of pG4-CAT reporter gene required the CREB moiety of the GAL4-CREB fusion protein and that Ser133 CREB was essential for Tat activity. Extracellular Tat also stimulated Ser133 CREB phosphorylation in freshly isolated PBMC; this effect was completely blocked by either staurosporin, a broad-spectrum inhibitor of various protein kinases, or PD 98059, a specific inhibitor of mitogen-activated protein kinases (MAPK). Furthermore, extracellular Tat induced a rapid (peak at 5-15 min) stimulation of the MAPK catalytic activity in primary PBMC. Altogether, these findings suggest that HIV-1 Tat protein activates CREB in lymphoid cells through a signal cascade involving the MAPK pathway.

Extracellular HIV-1 TAT protein induces the rapid ser133 phosphorylation and activation of CREB transcription factor in both jurkat lymphoblastoid T cells and primary peripheral blood mononuclear cells

D Gibellini;S Pierpaoli;
1998

Abstract

Extracellular HIV-1 Tat protein (0.1-100 ng/ml) induced a rapid (peak at 30 min) increase in the Ser133 phosphorylation levels of the transcription factor CREB in serum-starved Jurkat cells, as revealed by Western blot and indirect immunofluorescence analyses. Nuclear cAMP-responsive element (CRE) binding activity in electrophoretic mobility shift assays was constitutive in unstimulated Jurkat cells, showing only a small increase upon Tat treatment. However, transient transfection experiments performed with various chloramphenicol acetyl-transferase (CAT) constructs showed that Tat produced a fourfold induction of CAT activity only in the presence of a CRE-dependent CAT construct. Moreover, the use of plasmids encoding for GAL4-CREB fusion proteins demonstrated that Tat induction of pG4-CAT reporter gene required the CREB moiety of the GAL4-CREB fusion protein and that Ser133 CREB was essential for Tat activity. Extracellular Tat also stimulated Ser133 CREB phosphorylation in freshly isolated PBMC; this effect was completely blocked by either staurosporin, a broad-spectrum inhibitor of various protein kinases, or PD 98059, a specific inhibitor of mitogen-activated protein kinases (MAPK). Furthermore, extracellular Tat induced a rapid (peak at 5-15 min) stimulation of the MAPK catalytic activity in primary PBMC. Altogether, these findings suggest that HIV-1 Tat protein activates CREB in lymphoid cells through a signal cascade involving the MAPK pathway.
HIV-1, CREB, PBMC
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11562/1078929
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 66
  • ???jsp.display-item.citation.isi??? ND
social impact