Tractography is a powerful tool for the investigation of the complex organization of the brain in vivo, as it allows inferring the macroscopic pathways of the major fiber bundles of the white matter based on non-invasive diffusion-weighted magnetic resonance imaging acquisitions. Despite this unique and compelling ability, some studies have exposed the poor anatomical accuracy of the reconstructions obtained with this technique and challenged its effectiveness for studying brain connectivity. In this work, we describe a novel method to readdress tractography reconstruction problem in a global manner by combining the strengths of so-called generative and discriminative strategies. Starting from an input tractogram, we parameterize the connections between brain regions following a bundle-based representation that allows to drastically reducing the number of parameters needed to model groups of fascicles. The parameters space is explored following an MCMC generative approach, while a discrimininative method is exploited to globally evaluate the set of connections which is updated according to Bayes' rule. Our results on both synthetic and real brain data show that the proposed solution, called bundle-o-graphy, allows improving the anatomical accuracy of the reconstructions while keeping the computational complexity similar to other state-of-the-art methods.
Bundle-o-graphy: improving structural connectivity estimation with adaptive microstructure-informed tractography
Battocchio, Matteo;Daducci, Alessandro
2022-01-01
Abstract
Tractography is a powerful tool for the investigation of the complex organization of the brain in vivo, as it allows inferring the macroscopic pathways of the major fiber bundles of the white matter based on non-invasive diffusion-weighted magnetic resonance imaging acquisitions. Despite this unique and compelling ability, some studies have exposed the poor anatomical accuracy of the reconstructions obtained with this technique and challenged its effectiveness for studying brain connectivity. In this work, we describe a novel method to readdress tractography reconstruction problem in a global manner by combining the strengths of so-called generative and discriminative strategies. Starting from an input tractogram, we parameterize the connections between brain regions following a bundle-based representation that allows to drastically reducing the number of parameters needed to model groups of fascicles. The parameters space is explored following an MCMC generative approach, while a discrimininative method is exploited to globally evaluate the set of connections which is updated according to Bayes' rule. Our results on both synthetic and real brain data show that the proposed solution, called bundle-o-graphy, allows improving the anatomical accuracy of the reconstructions while keeping the computational complexity similar to other state-of-the-art methods.File | Dimensione | Formato | |
---|---|---|---|
1-s2.0-S1053811922007157-main.pdf
accesso aperto
Licenza:
Creative commons
Dimensione
5.15 MB
Formato
Adobe PDF
|
5.15 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.