The present work introduces self-assembled polystyrenesulfonate (PSS) molecules as soft nanocapsules for incorporation of Eu3+-Sm3+ complexes by the solvent exchange procedure. The high levels of Eu3+ - and Sm3+- luminescence of the complexes derives from the ligand-to-metal energy transfer, in turn, resulted from the complex formation of Eu3+ and Sm3+ ions with the three recently synthesized cyclophanic 1,3-diketones. The structural features of the ligands are optimized for the high thermal sensitivity of Eu3+- luminescence in DMF solutions. The PSS-nanocapsules (similar to 100 nm) provide both colloid and chemical stabilization of the ultrasmall (3-5 nm) nanoprecipitates of the complexes, although their luminescence spectra patterns and excited state lifetimes differ from the values measured for the complexes in DMF solutions. The specific concentration ratio of the Eu3+-Sm3+ complexes in the DMF solutions allows to tune the intensity ratio of the luminescence bands at 612 and 650 nm in the heterometallic Eu3+-Sm3+ colloids. The thermal sensitivity of the Eu3+- and Sm3+ luminescence of the complexes derives from the static quenching both in PSS-colloids and in DMF solutions, while the thermo-induced dynamic quenching of the luminescence is significant only in DMF solutions. The reversibility of thermo-induced luminescence changes of the Eu3+-Sm3+ colloids is demonstrated by six heating-cooling cycles. The DLS measurements before and after the six cycles reveal the invariance of the PSS-based capsule as the prerequisite for the recyclability of the temperature monitoring through the ratio of Eu-3(+)-to-Sm3+ luminescence.

Role of PSS-based assemblies in stabilization of Eu and Sm luminescent complexes and their thermoresponsive luminescence

Enrichi, Francesco;
2022-01-01

Abstract

The present work introduces self-assembled polystyrenesulfonate (PSS) molecules as soft nanocapsules for incorporation of Eu3+-Sm3+ complexes by the solvent exchange procedure. The high levels of Eu3+ - and Sm3+- luminescence of the complexes derives from the ligand-to-metal energy transfer, in turn, resulted from the complex formation of Eu3+ and Sm3+ ions with the three recently synthesized cyclophanic 1,3-diketones. The structural features of the ligands are optimized for the high thermal sensitivity of Eu3+- luminescence in DMF solutions. The PSS-nanocapsules (similar to 100 nm) provide both colloid and chemical stabilization of the ultrasmall (3-5 nm) nanoprecipitates of the complexes, although their luminescence spectra patterns and excited state lifetimes differ from the values measured for the complexes in DMF solutions. The specific concentration ratio of the Eu3+-Sm3+ complexes in the DMF solutions allows to tune the intensity ratio of the luminescence bands at 612 and 650 nm in the heterometallic Eu3+-Sm3+ colloids. The thermal sensitivity of the Eu3+- and Sm3+ luminescence of the complexes derives from the static quenching both in PSS-colloids and in DMF solutions, while the thermo-induced dynamic quenching of the luminescence is significant only in DMF solutions. The reversibility of thermo-induced luminescence changes of the Eu3+-Sm3+ colloids is demonstrated by six heating-cooling cycles. The DLS measurements before and after the six cycles reveal the invariance of the PSS-based capsule as the prerequisite for the recyclability of the temperature monitoring through the ratio of Eu-3(+)-to-Sm3+ luminescence.
2022
1,3-diketone
Calixarene
Judd-Ofelt analysis
Lanthanide chelate colloid
Luminescence thermometer
Nanoparticle
Europium
Ions
Ligands
Luminescence
Nanocapsules
File in questo prodotto:
File Dimensione Formato  
123_2022_Zairov_Coll&SurfB_PRE-PRINT.pdf

solo utenti autorizzati

Descrizione: Pubblicazione
Tipologia: Versione dell'editore
Licenza: Copyright dell'editore
Dimensione 2.16 MB
Formato Adobe PDF
2.16 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11562/1073907
Citazioni
  • ???jsp.display-item.citation.pmc??? 2
  • Scopus 8
  • ???jsp.display-item.citation.isi??? 7
social impact