We analyze strategic voting under proportional rule and two parties, embedding the basic spatial model into the Poisson framework of population uncertainty. We prove that there exists a unique Nash equilibrium. We show that it is characterized by a cutpoint in the policy space that is always located between the average of the two parties' positions and the median of the distribution of voters' types. We also show that, as the expected number of voters goes to infinity, the equilibrium converges to that of the case with deterministic population size.

Poisson voting games under proportional rule

Francesco De Sinopoli;Claudia Meroni
2022-01-01

Abstract

We analyze strategic voting under proportional rule and two parties, embedding the basic spatial model into the Poisson framework of population uncertainty. We prove that there exists a unique Nash equilibrium. We show that it is characterized by a cutpoint in the policy space that is always located between the average of the two parties' positions and the median of the distribution of voters' types. We also show that, as the expected number of voters goes to infinity, the equilibrium converges to that of the case with deterministic population size.
2022
Poisson Games,
Proportional representation
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11562/1073508
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
social impact