We study stochastic differential equations with a small perturbation parameter. Under the dissipative condition on the drift coefficient and the local Lipschitz condition on the drift and diffusion coefficients we prove the existence and uniqueness result for the perturbed SDE, also the convergence result for the solution of the perturbed system to the solution of the unperturbed system when the perturbation parameter approaches zero. We consider the application of the above-mentioned results to the Cauchy problem and the transport equations
DIFFUSION APPROXIMATION FOR TRANSPORT EQUATIONS WITH DISSIPATIVE DRIFTS
Di Persio Luca;Vardanyan Viktorya
2022-01-01
Abstract
We study stochastic differential equations with a small perturbation parameter. Under the dissipative condition on the drift coefficient and the local Lipschitz condition on the drift and diffusion coefficients we prove the existence and uniqueness result for the perturbed SDE, also the convergence result for the solution of the perturbed system to the solution of the unperturbed system when the perturbation parameter approaches zero. We consider the application of the above-mentioned results to the Cauchy problem and the transport equationsFile in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
mfat_2022_01_1721.pdf
accesso aperto
Tipologia:
Versione dell'editore
Licenza:
Copyright dell'editore
Dimensione
419.12 kB
Formato
Adobe PDF
|
419.12 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.