We developed a novel interpretable biological heart age estimation model using cardiovascular magnetic resonance radiomics measures of ventricular shape and myocardial character. We included 29,996 UK Biobank participants without cardiovascular disease. Images were segmented using an automated analysis pipeline. We extracted 254 radiomics features from the left ventricle, right ventricle, and myocardium of each study. We then used Bayesian ridge regression with tenfold cross-validation to develop a heart age estimation model using the radiomics features as the model input and chronological age as the model output. We examined associations of radiomics features with heart age in men and women, observing sex-diferential patterns. We subtracted actual age from model estimated heart age to calculate a “heart age delta”, which we considered as a measure of heart aging. We performed a phenome-wide association study of 701 exposures with heart age delta. The strongest correlates of heart aging were measures of obesity, adverse serum lipid markers, hypertension, diabetes, heart rate, income, multimorbidity, musculoskeletal health, and respiratory health. This technique provides a new method for phenotypic assessment relating to cardiovascular aging; further studies are required to assess whether it provides incremental risk information over current approaches.
Estimation of biological heart age using cardiovascular magnetic resonance radiomics
Ahmed Salih;Ilaria Boscolo Galazzo;Gloria Menegaz;
2022-01-01
Abstract
We developed a novel interpretable biological heart age estimation model using cardiovascular magnetic resonance radiomics measures of ventricular shape and myocardial character. We included 29,996 UK Biobank participants without cardiovascular disease. Images were segmented using an automated analysis pipeline. We extracted 254 radiomics features from the left ventricle, right ventricle, and myocardium of each study. We then used Bayesian ridge regression with tenfold cross-validation to develop a heart age estimation model using the radiomics features as the model input and chronological age as the model output. We examined associations of radiomics features with heart age in men and women, observing sex-diferential patterns. We subtracted actual age from model estimated heart age to calculate a “heart age delta”, which we considered as a measure of heart aging. We performed a phenome-wide association study of 701 exposures with heart age delta. The strongest correlates of heart aging were measures of obesity, adverse serum lipid markers, hypertension, diabetes, heart rate, income, multimorbidity, musculoskeletal health, and respiratory health. This technique provides a new method for phenotypic assessment relating to cardiovascular aging; further studies are required to assess whether it provides incremental risk information over current approaches.File | Dimensione | Formato | |
---|---|---|---|
s41598-022-16639-9.pdf
accesso aperto
Descrizione: Manuscript
Tipologia:
Versione dell'editore
Licenza:
Creative commons
Dimensione
2.76 MB
Formato
Adobe PDF
|
2.76 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.