Abstract Background: People with cancer with febrile neutropenia are at risk of severe infections and mortality and are thus treated empirically with broad-spectrum antibiotic therapy. However, the recommended duration of antibiotic therapy differs across guidelines. Objectives: To assess the safety of protocol-guided discontinuation of antibiotics regardless of neutrophil count, compared to continuation of antibiotics until neutropenia resolution in people with cancer with fever and neutropenia, in terms of mortality and morbidity. To assess the emergence of resistant bacteria in people with cancer treated with short courses of antibiotic therapy compared with people with cancer treated until resolution of neutropenia. Search methods: We searched the Cochrane Central Register of Controlled Trials (CENTRAL; 2018, Issue 10) in the Cochrane Library, MEDLINE, Embase, and LILACS up to 1 October 2018. We searched the metaRegister of Controlled Trials and the US National Institutes of Health Ongoing Trials Register ClinicalTrials.gov for ongoing and unpublished trials. We reviewed the references of all identified studies for additional trials and handsearched conference proceedings of international infectious diseases and oncology and haematology conferences. Selection criteria: We included randomised controlled trials (RCTs) that compared a short antibiotic therapy course in which discontinuation of antibiotics was guided by protocols regardless of the neutrophil count to a long course in which antibiotics were continued until neutropenia resolution in people with cancer with febrile neutropenia. The primary outcome was 30-day or end of follow-up all-cause mortality. Data collection and analysis: Two review authors independently reviewed all studies for eligibility, extracted data, and assessed risk of bias for all included trials. We calculated risk ratios (RRs) with 95% confidence intervals (CIs) whenever possible. For dichotomous outcomes with zero events in both arms of the trials, we conducted meta-analysis of risk differences (RDs) as well. For continuous outcomes, we extracted means with standard deviations (SD) from the studies and computed mean difference (MD) and 95% CI. If no substantial clinical heterogeneity was found, trials were pooled using the Mantel-Haenszel fixed-effect model. Main results: We included eight RCTs comprising a total of 662 distinct febrile neutropenia episodes. The studies included adults and children, and had variable design and criteria for discontinuation of antibiotics in both study arms. All included studies but two were performed before the year 2000. All studies included people with cancer with fever of unknown origin and excluded people with microbiological documented infections.We found no significant difference between the short-antibiotic therapy arm and the long-antibiotic therapy arm for all-cause mortality (RR 1.38, 95% CI 0.73 to 2.62; RD 0.02, 95% CI -0.02 to 0.05; low-certainty evidence). We downgraded the certainty of the evidence to low due to imprecision and high risk of selection bias. The number of fever days was significantly lower for people in the short-antibiotic treatment arm compared to the long-antibiotic treatment arm (mean difference -0.64, 95% CI -0.96 to -0.32; I² = 30%). In all studies, total antibiotic days were fewer in the intervention arm by three to seven days compared to the long antibiotic therapy. We found no significant differences in the rates of clinical failure (RR 1.23, 95% CI 0.85 to 1.77; very low-certainty evidence). We downgraded the certainty of the evidence for clinical failure due to variable and inconsistent definitions of clinical failure across studies, possible selection bias, and wide confidence intervals. There was no significant difference in the incidence of bacteraemia occurring after randomisation (RR 1.56, 95% CI 0.91 to 2.66; very low-certainty evidence), while the incidence of any documented infections was significantly higher in the short-antibiotic therapy arm (RR 1.67, 95% CI 1.08 to 2.57). There was no significant difference in the incidence of invasive fungal infections (RR 0.86, 95% CI 0.32 to 2.31) and development of antibiotic resistance (RR 1.49, 95% CI 0.62 to 3.61). The data on hospital stay were too sparse to permit any meaningful conclusions. Authors' conclusions: We could make no strong conclusions on the safety of antibiotic discontinuation before neutropenia resolution among people with cancer with febrile neutropenia based on the existing evidence and its low certainty. Results of microbiological outcomes favouring long antibiotic therapy may be misleading due to lower culture positivity rates under antibiotic therapy and not true differences in infection rates. Well-designed, adequately powered RCTs are required that address this issue in the era of rising antibiotic resistance.

Early discontinuation of antibiotics for febrile neutropenia versus continuation until neutropenia resolution

Carrara, E.;
2019-01-01

Abstract

Abstract Background: People with cancer with febrile neutropenia are at risk of severe infections and mortality and are thus treated empirically with broad-spectrum antibiotic therapy. However, the recommended duration of antibiotic therapy differs across guidelines. Objectives: To assess the safety of protocol-guided discontinuation of antibiotics regardless of neutrophil count, compared to continuation of antibiotics until neutropenia resolution in people with cancer with fever and neutropenia, in terms of mortality and morbidity. To assess the emergence of resistant bacteria in people with cancer treated with short courses of antibiotic therapy compared with people with cancer treated until resolution of neutropenia. Search methods: We searched the Cochrane Central Register of Controlled Trials (CENTRAL; 2018, Issue 10) in the Cochrane Library, MEDLINE, Embase, and LILACS up to 1 October 2018. We searched the metaRegister of Controlled Trials and the US National Institutes of Health Ongoing Trials Register ClinicalTrials.gov for ongoing and unpublished trials. We reviewed the references of all identified studies for additional trials and handsearched conference proceedings of international infectious diseases and oncology and haematology conferences. Selection criteria: We included randomised controlled trials (RCTs) that compared a short antibiotic therapy course in which discontinuation of antibiotics was guided by protocols regardless of the neutrophil count to a long course in which antibiotics were continued until neutropenia resolution in people with cancer with febrile neutropenia. The primary outcome was 30-day or end of follow-up all-cause mortality. Data collection and analysis: Two review authors independently reviewed all studies for eligibility, extracted data, and assessed risk of bias for all included trials. We calculated risk ratios (RRs) with 95% confidence intervals (CIs) whenever possible. For dichotomous outcomes with zero events in both arms of the trials, we conducted meta-analysis of risk differences (RDs) as well. For continuous outcomes, we extracted means with standard deviations (SD) from the studies and computed mean difference (MD) and 95% CI. If no substantial clinical heterogeneity was found, trials were pooled using the Mantel-Haenszel fixed-effect model. Main results: We included eight RCTs comprising a total of 662 distinct febrile neutropenia episodes. The studies included adults and children, and had variable design and criteria for discontinuation of antibiotics in both study arms. All included studies but two were performed before the year 2000. All studies included people with cancer with fever of unknown origin and excluded people with microbiological documented infections.We found no significant difference between the short-antibiotic therapy arm and the long-antibiotic therapy arm for all-cause mortality (RR 1.38, 95% CI 0.73 to 2.62; RD 0.02, 95% CI -0.02 to 0.05; low-certainty evidence). We downgraded the certainty of the evidence to low due to imprecision and high risk of selection bias. The number of fever days was significantly lower for people in the short-antibiotic treatment arm compared to the long-antibiotic treatment arm (mean difference -0.64, 95% CI -0.96 to -0.32; I² = 30%). In all studies, total antibiotic days were fewer in the intervention arm by three to seven days compared to the long antibiotic therapy. We found no significant differences in the rates of clinical failure (RR 1.23, 95% CI 0.85 to 1.77; very low-certainty evidence). We downgraded the certainty of the evidence for clinical failure due to variable and inconsistent definitions of clinical failure across studies, possible selection bias, and wide confidence intervals. There was no significant difference in the incidence of bacteraemia occurring after randomisation (RR 1.56, 95% CI 0.91 to 2.66; very low-certainty evidence), while the incidence of any documented infections was significantly higher in the short-antibiotic therapy arm (RR 1.67, 95% CI 1.08 to 2.57). There was no significant difference in the incidence of invasive fungal infections (RR 0.86, 95% CI 0.32 to 2.31) and development of antibiotic resistance (RR 1.49, 95% CI 0.62 to 3.61). The data on hospital stay were too sparse to permit any meaningful conclusions. Authors' conclusions: We could make no strong conclusions on the safety of antibiotic discontinuation before neutropenia resolution among people with cancer with febrile neutropenia based on the existing evidence and its low certainty. Results of microbiological outcomes favouring long antibiotic therapy may be misleading due to lower culture positivity rates under antibiotic therapy and not true differences in infection rates. Well-designed, adequately powered RCTs are required that address this issue in the era of rising antibiotic resistance.
2019
febrile neutropenia
antibiotics
corticosteroids
File in questo prodotto:
File Dimensione Formato  
Stern-2019-Early discontinuation of antibiotic.pdf

accesso aperto

Licenza: Dominio pubblico
Dimensione 552.63 kB
Formato Adobe PDF
552.63 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11562/1071251
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 34
  • ???jsp.display-item.citation.isi??? 29
social impact