One of the main challenges for computer-assisted surgery (CAS) is to determine the intra-operative morphology and motion of soft-tissues. This information is prerequisite to the registration of multi-modal patient-specific data for enhancing the surgeon’s navigation capabilities by observing beyond exposed tissue surfaces and for providing intelligent control of robotic-assisted instruments. In minimally invasive surgery (MIS), optical techniques are an increasingly attractive approach for in vivo 3D reconstruction of the soft-tissue surface geometry. This thesis addresses the ambitious goal of achieving surgical autonomy, through the study of the anatomical environment by Initially studying the technology present and what is needed to analyze the scene: vision sensors. A novel endoscope for autonomous surgical task execution is presented in the first part of this thesis. Which combines a standard stereo camera with a depth sensor. This solution introduces several key advantages, such as the possibility of reconstructing the 3D at a greater distance than traditional endoscopes. Then the problem of hand-eye calibration is tackled, which unites the vision system and the robot in a single reference system. Increasing the accuracy in the surgical work plan. In the second part of the thesis the problem of the 3D reconstruction and the algorithms currently in use were addressed. In MIS, simultaneous localization and mapping (SLAM) can be used to localize the pose of the endoscopic camera and build ta 3D model of the tissue surface. Another key element for MIS is to have real-time knowledge of the pose of surgical tools with respect to the surgical camera and underlying anatomy. Starting from the ORB-SLAM algorithm we have modified the architecture to make it usable in an anatomical environment by adding the registration of the pre-operative information of the intervention to the map obtained from the SLAM. Once it has been proven that the slam algorithm is usable in an anatomical environment, it has been improved by adding semantic segmentation to be able to distinguish dynamic features from static ones. All the results in this thesis are validated on training setups, which mimics some of the challenges of real surgery and on setups that simulate the human body within Autonomous Robotic Surgery (ARS) and Smart Autonomous Robotic Assistant Surgeon (SARAS) projects.
Medical SLAM in an autonomous robotic system
Andrea Roberti
2022-01-01
Abstract
One of the main challenges for computer-assisted surgery (CAS) is to determine the intra-operative morphology and motion of soft-tissues. This information is prerequisite to the registration of multi-modal patient-specific data for enhancing the surgeon’s navigation capabilities by observing beyond exposed tissue surfaces and for providing intelligent control of robotic-assisted instruments. In minimally invasive surgery (MIS), optical techniques are an increasingly attractive approach for in vivo 3D reconstruction of the soft-tissue surface geometry. This thesis addresses the ambitious goal of achieving surgical autonomy, through the study of the anatomical environment by Initially studying the technology present and what is needed to analyze the scene: vision sensors. A novel endoscope for autonomous surgical task execution is presented in the first part of this thesis. Which combines a standard stereo camera with a depth sensor. This solution introduces several key advantages, such as the possibility of reconstructing the 3D at a greater distance than traditional endoscopes. Then the problem of hand-eye calibration is tackled, which unites the vision system and the robot in a single reference system. Increasing the accuracy in the surgical work plan. In the second part of the thesis the problem of the 3D reconstruction and the algorithms currently in use were addressed. In MIS, simultaneous localization and mapping (SLAM) can be used to localize the pose of the endoscopic camera and build ta 3D model of the tissue surface. Another key element for MIS is to have real-time knowledge of the pose of surgical tools with respect to the surgical camera and underlying anatomy. Starting from the ORB-SLAM algorithm we have modified the architecture to make it usable in an anatomical environment by adding the registration of the pre-operative information of the intervention to the map obtained from the SLAM. Once it has been proven that the slam algorithm is usable in an anatomical environment, it has been improved by adding semantic segmentation to be able to distinguish dynamic features from static ones. All the results in this thesis are validated on training setups, which mimics some of the challenges of real surgery and on setups that simulate the human body within Autonomous Robotic Surgery (ARS) and Smart Autonomous Robotic Assistant Surgeon (SARAS) projects.File | Dimensione | Formato | |
---|---|---|---|
PhD Thesis Andrea Roberti - Medical SLAM.pdf
accesso aperto
Tipologia:
Tesi di dottorato
Licenza:
Creative commons
Dimensione
2.52 MB
Formato
Adobe PDF
|
2.52 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.