Transcranial magnetic stimulation (TMS)-induced relaxation rate reflects intrinsic muscle contractile properties by interrupting the drive from the central nervous system during voluntary muscle contractions. To determine the appropriateness of knee-extensor muscle relaxation measurements induced by TMS, this study aimed to establish both the within- and between-session reliability before and after a fatiguing exercise bout. Eighteen participants (9 females, 9 males, age 25 ± 2 years, height 171 ± 9 cm, body mass 68.5 ± 13.5 kg) volunteered to participate in two identical sessions approximately 30 days apart. Maximal and submaximal neuromuscular evaluations were performed with TMS six times before (PRE) and at the end (POST) of a 2-min sustained maximal voluntary isometric contraction. Within- and between-session reliability of PRE values were assessed with intraclass correlation coefficient (ICC2,1, relative reliability), repeatability coefficient (absolute reliability), and coefficient of variation (variability). Test-retest reliability of post-exercise muscle relaxation rates was assessed with Bland-Altman plots. For both the absolute and normalized peak relaxation rates and time to peak relaxation, data demonstrated low variability (e.g. coefficient of variation ≤ 7.8%) and high reliability (e.g. ICC2,1 ≥ 0.963). Bland-Altman plots showed low systematic errors. These findings establish the reliability of TMS-induced muscle relaxation rates in unfatigued and fatigued knee-extensor muscles, showing that TMS is a useful technique that researchers can use when investigating changes in muscle relaxation rates both in unfatigued and fatigued knee-extensor muscles.

Reliability of relaxation properties of knee-extensor muscles induced by transcranial magnetic stimulation

Barbi, Chiara;Giuriato, Gaia;Martignon, Camilla;Schena, Federico;Venturelli, Massimo
2022-01-01

Abstract

Transcranial magnetic stimulation (TMS)-induced relaxation rate reflects intrinsic muscle contractile properties by interrupting the drive from the central nervous system during voluntary muscle contractions. To determine the appropriateness of knee-extensor muscle relaxation measurements induced by TMS, this study aimed to establish both the within- and between-session reliability before and after a fatiguing exercise bout. Eighteen participants (9 females, 9 males, age 25 ± 2 years, height 171 ± 9 cm, body mass 68.5 ± 13.5 kg) volunteered to participate in two identical sessions approximately 30 days apart. Maximal and submaximal neuromuscular evaluations were performed with TMS six times before (PRE) and at the end (POST) of a 2-min sustained maximal voluntary isometric contraction. Within- and between-session reliability of PRE values were assessed with intraclass correlation coefficient (ICC2,1, relative reliability), repeatability coefficient (absolute reliability), and coefficient of variation (variability). Test-retest reliability of post-exercise muscle relaxation rates was assessed with Bland-Altman plots. For both the absolute and normalized peak relaxation rates and time to peak relaxation, data demonstrated low variability (e.g. coefficient of variation ≤ 7.8%) and high reliability (e.g. ICC2,1 ≥ 0.963). Bland-Altman plots showed low systematic errors. These findings establish the reliability of TMS-induced muscle relaxation rates in unfatigued and fatigued knee-extensor muscles, showing that TMS is a useful technique that researchers can use when investigating changes in muscle relaxation rates both in unfatigued and fatigued knee-extensor muscles.
2022
fatigue
knee extensors
muscle relaxation rate
reliability
transcranial magnetic stimulation
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11562/1065725
Citazioni
  • ???jsp.display-item.citation.pmc??? 0
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 2
social impact