An evaluation was conducted of the colonization of Pseudomonas protegens MP12, a plantgrowth promoting and antagonistic strain, inoculated in vine plants during a standard process of grapevine nursery propagation. Three in vivo inoculation protocols (endophytic, rhizospheric, and epiphytic) were implemented and monitored by means of both culture-dependent and independent techniques. Endophytic treatment resulted in the colonization of the bacterium inside the vine cuttings, which spread to young leaves during the forcing period. Microscopy analysis performed on transformed dsRed-tagged P. protegens MP12 cells confirmed the bacterium’s ability to penetrate the inner part of the roots. However, endophytic MP12 strain was no longer detected once the plant materials had been placed in the vine nursery field. The bacterium also displayed an ability to colonize the rhizosphere and, when the plants were uprooted at the end of the vegetative season, its persistence was confirmed. Epiphytic inoculation, performed by foliar spraying of cell suspension, was effective in controlling artificially-induced Botrytis cinerea infection in detached leaves. The success of rhizospheric and leaf colonization in vine plants suggests potential for the future exploitation of P. protegens MP12 as biofertilizer and biopesticide. Further investigation is required into the stability of the bacterium’s colonization of vine plants under real-world conditions in vineyards.

In vivo endophytic, rhizospheric and epiphytic colonization of vitis vinifera by the plant-growth promoting and antifungal strain pseudomonas protegens MP12

Andreolli, Marco;Zapparoli, Giacomo
;
Lampis, Silvia;Santi, Chiara;
2021-01-01

Abstract

An evaluation was conducted of the colonization of Pseudomonas protegens MP12, a plantgrowth promoting and antagonistic strain, inoculated in vine plants during a standard process of grapevine nursery propagation. Three in vivo inoculation protocols (endophytic, rhizospheric, and epiphytic) were implemented and monitored by means of both culture-dependent and independent techniques. Endophytic treatment resulted in the colonization of the bacterium inside the vine cuttings, which spread to young leaves during the forcing period. Microscopy analysis performed on transformed dsRed-tagged P. protegens MP12 cells confirmed the bacterium’s ability to penetrate the inner part of the roots. However, endophytic MP12 strain was no longer detected once the plant materials had been placed in the vine nursery field. The bacterium also displayed an ability to colonize the rhizosphere and, when the plants were uprooted at the end of the vegetative season, its persistence was confirmed. Epiphytic inoculation, performed by foliar spraying of cell suspension, was effective in controlling artificially-induced Botrytis cinerea infection in detached leaves. The success of rhizospheric and leaf colonization in vine plants suggests potential for the future exploitation of P. protegens MP12 as biofertilizer and biopesticide. Further investigation is required into the stability of the bacterium’s colonization of vine plants under real-world conditions in vineyards.
2021
bacterial inoculum; biocontrol; endophytic bacteria; epiphytic bacteria; Pseudomonas protegens MP12; rhizospheric bacteria; Vitis vinifera
File in questo prodotto:
File Dimensione Formato  
microorganisms-09-00234-v2- Andreolli et al., 2021.pdf

accesso aperto

Tipologia: Documento in Post-print
Licenza: Dominio pubblico
Dimensione 4.46 MB
Formato Adobe PDF
4.46 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11562/1064966
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 11
  • ???jsp.display-item.citation.isi??? ND
social impact