In this paper we present the investigation of the energy transfer efficiency between Tb3+ and Yb3+ ions in silica-hafnia waveguides. Cooperative energy transfer between these two ions allows to cut one 488 nm photon in two 980 nm photons and could have important applications in improving the performance of photovoltaic solar cells. Previous works revealed that for a given concentration of donors (Tb3+, increasing the number of acceptors (Yb3+) located near to the Tb3+ ion can increase the Tb-Yb transfer probability. However, when increasing the density of active ions, some detrimental effects due to cross-relaxation mechanisms become relevant. On the basis of this observation the sample doping was chosen keeping constant the molar ratio [Yb]/[Tb] = 4 and the total rare earths contents were [Tb + Yb]/[Si + Hf] = 5%, 7%, 9%. The choice of the matrix is another crucial point to obtain an efficient down conversion processes with rare earth ions. To this respect a 70SiO(2)-30HfO(2) waveguide composition was chosen. The comparison between the glass and the glass-ceramic structures demonstrated that the latter is more efficient since it combines the good optical properties of glasses with the optimal spectroscopic properties of crystals activated by luminescent species. A maximum transfer efficiency of 55% was found for the highest rare earth doping concentration. (C) 2015 Elsevier B.V. All rights reserved.

Tb3+/Yb3+ codoped silica-hafnia glass and glass-ceramic waveguides to improve the efficiency of photovoltaic solar cells

Enrichi, F.
2016-01-01

Abstract

In this paper we present the investigation of the energy transfer efficiency between Tb3+ and Yb3+ ions in silica-hafnia waveguides. Cooperative energy transfer between these two ions allows to cut one 488 nm photon in two 980 nm photons and could have important applications in improving the performance of photovoltaic solar cells. Previous works revealed that for a given concentration of donors (Tb3+, increasing the number of acceptors (Yb3+) located near to the Tb3+ ion can increase the Tb-Yb transfer probability. However, when increasing the density of active ions, some detrimental effects due to cross-relaxation mechanisms become relevant. On the basis of this observation the sample doping was chosen keeping constant the molar ratio [Yb]/[Tb] = 4 and the total rare earths contents were [Tb + Yb]/[Si + Hf] = 5%, 7%, 9%. The choice of the matrix is another crucial point to obtain an efficient down conversion processes with rare earth ions. To this respect a 70SiO(2)-30HfO(2) waveguide composition was chosen. The comparison between the glass and the glass-ceramic structures demonstrated that the latter is more efficient since it combines the good optical properties of glasses with the optimal spectroscopic properties of crystals activated by luminescent species. A maximum transfer efficiency of 55% was found for the highest rare earth doping concentration. (C) 2015 Elsevier B.V. All rights reserved.
Glass-ceramic waveguides
Photoluminescence
Tb-Yb rare earths
Energy transfer
Quantum cutting
Solar cells
File in questo prodotto:
File Dimensione Formato  
79_2016_Bouajaj_OptMat.pdf

solo utenti autorizzati

Descrizione: Articolo
Licenza: Accesso ristretto
Dimensione 1.39 MB
Formato Adobe PDF
1.39 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11562/1064519
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 48
  • ???jsp.display-item.citation.isi??? 46
social impact