Torsion pairs in the category of finitely presented modules over a noetherian ring can be parametrised by the class of cosilting modules. In this paper, we characterise such modules in terms of their indecomposable summands, providing a new approach to the classification of torsion pairs. In particular, we classify cosilting modules over cluster-tilted algebras of type . We do this by using a geometric model for finite- and infinite-dimensional modules over such algebras.

Torsion pairs and cosilting in type A˜

Laking, Rosanna
2022-01-01

Abstract

Torsion pairs in the category of finitely presented modules over a noetherian ring can be parametrised by the class of cosilting modules. In this paper, we characterise such modules in terms of their indecomposable summands, providing a new approach to the classification of torsion pairs. In particular, we classify cosilting modules over cluster-tilted algebras of type . We do this by using a geometric model for finite- and infinite-dimensional modules over such algebras.
2022
Torsion pair
Geometric model
Cosilting
Pure-injective
Cluster-tilted
Torsion pair
Gentle algebra
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11562/1062856
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 2
social impact