Background: Cortico-cortical evoked potentials (CCEPs) recorded by stereo-electroencephalography (SEEG) are a valuable tool to investigate brain reactivity and effective connectivity. However, invasive recordings are spatially sparse since they depend on clinical needs. This sparsity hampers systematic comparisons across-subjects, the detection of the whole-brain effects of intracortical stimulation, as well as their relationships to the EEG responses evoked by non-invasive stimuli. Objective: To demonstrate that CCEPs recorded by high-density electroencephalography (hd-EEG) provide additional information with respect SEEG alone and to provide an open, curated dataset to allow for further exploration of their potential. Methods: The dataset encompasses SEEG and hd-EEG recordings simultaneously acquired during Single Pulse Electrical Stimulation (SPES) in drug-resistant epileptic patients (N = 36) in whom stimulations were delivered with different physical, geometrical, and topological parameters. Differences in CCEPs were assessed by amplitude, latency, and spectral measures. Results: While invasively and non-invasively recorded CCEPs were generally correlated, differences in pulse duration, angle and stimulated cortical area were better captured by hd-EEG. Further, intracranial stimulation evoked site-specific hd-EEG responses that reproduced the spectral features of EEG responses to transcranial magnetic stimulation (TMS). Notably, SPES, albeit unperceived by subjects, elicited scalp responses that were up to one order of magnitude larger than the responses typically evoked by sensory stimulation in awake humans. Conclusions: CCEPs can be simultaneously recorded with SEEG and hd-EEG and the latter provides a reliable descriptor of the effects of SPES as well as a common reference to compare the whole-brain effects of intracortical stimulation to those of non-invasive transcranial or sensory stimulations in humans.
Simultaneous stereo-EEG and high-density scalp EEG recordings to study the effects of intracerebral stimulation parameters
Giampiccolo, D;
2022-01-01
Abstract
Background: Cortico-cortical evoked potentials (CCEPs) recorded by stereo-electroencephalography (SEEG) are a valuable tool to investigate brain reactivity and effective connectivity. However, invasive recordings are spatially sparse since they depend on clinical needs. This sparsity hampers systematic comparisons across-subjects, the detection of the whole-brain effects of intracortical stimulation, as well as their relationships to the EEG responses evoked by non-invasive stimuli. Objective: To demonstrate that CCEPs recorded by high-density electroencephalography (hd-EEG) provide additional information with respect SEEG alone and to provide an open, curated dataset to allow for further exploration of their potential. Methods: The dataset encompasses SEEG and hd-EEG recordings simultaneously acquired during Single Pulse Electrical Stimulation (SPES) in drug-resistant epileptic patients (N = 36) in whom stimulations were delivered with different physical, geometrical, and topological parameters. Differences in CCEPs were assessed by amplitude, latency, and spectral measures. Results: While invasively and non-invasively recorded CCEPs were generally correlated, differences in pulse duration, angle and stimulated cortical area were better captured by hd-EEG. Further, intracranial stimulation evoked site-specific hd-EEG responses that reproduced the spectral features of EEG responses to transcranial magnetic stimulation (TMS). Notably, SPES, albeit unperceived by subjects, elicited scalp responses that were up to one order of magnitude larger than the responses typically evoked by sensory stimulation in awake humans. Conclusions: CCEPs can be simultaneously recorded with SEEG and hd-EEG and the latter provides a reliable descriptor of the effects of SPES as well as a common reference to compare the whole-brain effects of intracortical stimulation to those of non-invasive transcranial or sensory stimulations in humans.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.