The analysis of surface roughness in highly reflective metal artworks is challenging and requires contactless devices capable to measure regions with high micrometer accuracy in both depth and lateral directions. We demonstrate optical profilometry based on scanning conoscopic holography for micrometer measurement of silver samples treated with different hand-made cleaning processes. The technique is shown effective in acquiring shiny and smooth metal samples providing high-resolution and highaccurate dataset (0.1µm depth and 5µm lateral resolution) that is a reliable representation of the microsurface structure. From a statistical point of view, the cleaning treatments have the same nature of the low-abrasion, but the underlying mechanical processes are different. This fact suggested a more in-depth study of both the amplitude and the hybrid areal roughness parameters. It is proposed a workflow for a dual integrated multiscale roughness analysis for surface characterization: a scale inspection to detect possible texture non-homogeneity, and a signals separation to outline the most significant texture components. The scale-limited components allowed to discriminate the different surface processes. The results on silver samples demonstrate the potential of multiscale roughness analysis by conoscopic holography as a new tool for treatment monitoring in metal artworks.

Multiscale roughness analysis by microprofilometry based on conoscopic holography: a new tool for treatment monitoring in highly reflective metal artworks

Daffara, Claudia
;
Mazzocato, Sara;Marchioro, Giacomo
2022-01-01

Abstract

The analysis of surface roughness in highly reflective metal artworks is challenging and requires contactless devices capable to measure regions with high micrometer accuracy in both depth and lateral directions. We demonstrate optical profilometry based on scanning conoscopic holography for micrometer measurement of silver samples treated with different hand-made cleaning processes. The technique is shown effective in acquiring shiny and smooth metal samples providing high-resolution and highaccurate dataset (0.1µm depth and 5µm lateral resolution) that is a reliable representation of the microsurface structure. From a statistical point of view, the cleaning treatments have the same nature of the low-abrasion, but the underlying mechanical processes are different. This fact suggested a more in-depth study of both the amplitude and the hybrid areal roughness parameters. It is proposed a workflow for a dual integrated multiscale roughness analysis for surface characterization: a scale inspection to detect possible texture non-homogeneity, and a signals separation to outline the most significant texture components. The scale-limited components allowed to discriminate the different surface processes. The results on silver samples demonstrate the potential of multiscale roughness analysis by conoscopic holography as a new tool for treatment monitoring in metal artworks.
2022
conoscopic holographty
roughness
heritage science
micro-profilometry
surface metrology
treatment monitoring
File in questo prodotto:
File Dimensione Formato  
Daffara2022_Article_MultiscaleRoughnessAnalysisByM.pdf

accesso aperto

Tipologia: Versione dell'editore
Licenza: Creative commons
Dimensione 3.6 MB
Formato Adobe PDF
3.6 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11562/1061961
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 10
  • ???jsp.display-item.citation.isi??? 9
social impact