: Single chain variable D2B antibody fragments (scFvD2Bs) exhibit high affinity binding to prostate specific membrane antigens overexpressed in metastatic prostate cancer (PC). Conjugation of scFvD2B to gold nanoparticles (AuNPs) would enhance its stability and plasma half-life circulation to shuttle theranostic agents in PC. In this study, we synthesized PEGylated scFvD2B-AuNPs (AuNPs-scFvD2B-PEG) and tested their integrity, biocompatibility, and immunogenicity in freshly withdrawn human blood. Prior to blood incubation, Zeta potential measurements, UV-Vis spectroscopy, and dynamic light scattering (DLS) were used to assess the physicochemical properties of our nano-complexes in the presence or absence of PEGylation. A surface plasmon resonance band shift of 2 and 4 nm confirmed the successful coating for AuNPs-scFvD2B and AuNPs-scFvD2B-PEG, respectively. Likewise, DLS revealed a size increase of ~3 nm for AuNPs-scFvD2B and ~19 nm for AuNPs-scFvD2B-PEG. Zeta potential increased from -34 mV to -19 mV for AuNPs-scFvD2B and reached -3 mV upon PEGylation. Similar assessment measures were applied post-incubation in human blood with additional immunogenicity tests, such as hemolysis assay, neutrophil function test (NFT), and pyridine formazan extraction. Interestingly, grafting PEG chains on AuNPs-scFvD2B precluded the binding of blood plasma proteins and reduced neutrophil activation level compared with naked AuNPs-citrate counterparts. Most likely, a hydrated negative PEG cloud shielded the NPs rendering blood compatiblility with less than 10% hemolysis. In conclusion, the biocompatible AuNPs-scFvD2B-PEG presents promising characteristics for PC targeted therapy, with minimal protein adsorption affinity, low immunorecognition, and reduced hemolytic activity.

Human Blood biocompatibility and immunogenicity of scFvD2B PEGylated gold nanoparticles

Fracasso, Giulio
Formal Analysis
;
2022-01-01

Abstract

: Single chain variable D2B antibody fragments (scFvD2Bs) exhibit high affinity binding to prostate specific membrane antigens overexpressed in metastatic prostate cancer (PC). Conjugation of scFvD2B to gold nanoparticles (AuNPs) would enhance its stability and plasma half-life circulation to shuttle theranostic agents in PC. In this study, we synthesized PEGylated scFvD2B-AuNPs (AuNPs-scFvD2B-PEG) and tested their integrity, biocompatibility, and immunogenicity in freshly withdrawn human blood. Prior to blood incubation, Zeta potential measurements, UV-Vis spectroscopy, and dynamic light scattering (DLS) were used to assess the physicochemical properties of our nano-complexes in the presence or absence of PEGylation. A surface plasmon resonance band shift of 2 and 4 nm confirmed the successful coating for AuNPs-scFvD2B and AuNPs-scFvD2B-PEG, respectively. Likewise, DLS revealed a size increase of ~3 nm for AuNPs-scFvD2B and ~19 nm for AuNPs-scFvD2B-PEG. Zeta potential increased from -34 mV to -19 mV for AuNPs-scFvD2B and reached -3 mV upon PEGylation. Similar assessment measures were applied post-incubation in human blood with additional immunogenicity tests, such as hemolysis assay, neutrophil function test (NFT), and pyridine formazan extraction. Interestingly, grafting PEG chains on AuNPs-scFvD2B precluded the binding of blood plasma proteins and reduced neutrophil activation level compared with naked AuNPs-citrate counterparts. Most likely, a hydrated negative PEG cloud shielded the NPs rendering blood compatiblility with less than 10% hemolysis. In conclusion, the biocompatible AuNPs-scFvD2B-PEG presents promising characteristics for PC targeted therapy, with minimal protein adsorption affinity, low immunorecognition, and reduced hemolytic activity.
AuNPs
Hemocompatibility
Immunogenicity
PEG
Prostate cancer
scFvD2B
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11562/1061920
Citazioni
  • ???jsp.display-item.citation.pmc??? 1
  • Scopus ND
  • ???jsp.display-item.citation.isi??? 0
social impact