The aim of the present study is to detect the presence of SARS-CoV-2 of patients affected by COVID-19 in olfactory mucosa (OM), sampled with nasal brushing (NB) and biopsy, and to assess whether a non-invasive procedure, such as NB, might be used as a large-scale procedure for demonstrating SARS-CoV-2 presence in olfactory neuroepithelium. Nasal brushings obtained from all the COVID-19 patients resulted positive to SARS-CoV-2 immunocytochemistry while controls were negative. Double immunofluorescence showed that SARS-CoV-2 positive cells included supporting cells as well as olfactory neurons and basal cells. OM biopsies showed an uneven distribution of SARS-CoV-2 positivity along the olfactory neuroepithelium, while OM from controls were negative. SARS-CoV-2 was distinctively found in sustentacular cells, olfactory neurons, and basal cells, supporting what was observed in NB. Ultrastructural analysis of OM biopsies showed SARS-CoV-2 viral particles in the cytoplasm of sustentacular cells. This study shows the presence of SARS-CoV-2 at the level of the olfactory neuroepithelium in patients affected by COVID-19. For the first time, we used NB as a rapid non-invasive tool for assessing a potential neuroinvasion by SARS-CoV-2 infection.

Evidence of SARS-CoV-2 in nasal brushings and olfactory mucosa biopsies of COVID-19 patients

Ferrari, Sergio;Zanusso, Gianluigi;
2022-01-01

Abstract

The aim of the present study is to detect the presence of SARS-CoV-2 of patients affected by COVID-19 in olfactory mucosa (OM), sampled with nasal brushing (NB) and biopsy, and to assess whether a non-invasive procedure, such as NB, might be used as a large-scale procedure for demonstrating SARS-CoV-2 presence in olfactory neuroepithelium. Nasal brushings obtained from all the COVID-19 patients resulted positive to SARS-CoV-2 immunocytochemistry while controls were negative. Double immunofluorescence showed that SARS-CoV-2 positive cells included supporting cells as well as olfactory neurons and basal cells. OM biopsies showed an uneven distribution of SARS-CoV-2 positivity along the olfactory neuroepithelium, while OM from controls were negative. SARS-CoV-2 was distinctively found in sustentacular cells, olfactory neurons, and basal cells, supporting what was observed in NB. Ultrastructural analysis of OM biopsies showed SARS-CoV-2 viral particles in the cytoplasm of sustentacular cells. This study shows the presence of SARS-CoV-2 at the level of the olfactory neuroepithelium in patients affected by COVID-19. For the first time, we used NB as a rapid non-invasive tool for assessing a potential neuroinvasion by SARS-CoV-2 infection.
2022
SARS CoV-2
Biopsy
COVID-19
Olfactory receptor neurons
Nasal mucosa
Nucleocapsids
Olfactory bulb
Sertoli cells
File in questo prodotto:
File Dimensione Formato  
journal.pone.0266740.pdf

accesso aperto

Descrizione: CC BY 4.0 publisher version
Tipologia: Versione dell'editore
Licenza: Creative commons
Dimensione 851.84 kB
Formato Adobe PDF
851.84 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11562/1061867
Citazioni
  • ???jsp.display-item.citation.pmc??? 3
  • Scopus 8
  • ???jsp.display-item.citation.isi??? 6
social impact