Marked changes occur in the brain during people's lives, and individual rates of aging have revealed pronounced differences, giving rise to subject-specific brainprints that are the signature of the brain. These are shaped by a great variety of factors, both endogenous and exogenous. Accurate predictions of brain age (BA) can be derived from neuroimaging endophenotypes by using machine and deep learning (DL) techniques. Predictive models leading to accurate estimates while revealing which features contribute the most to final predictions are key to unveiling the mechanisms underlying the evolution of brain aging patterns. Explainable artificial intelligence (XAI) methods are emerging as enabling technology in different fields, and biomedicine is no exception. Within this framework, this article examines BA and presents a comprehensive review of recent advances in the exploitation of explainable machine learning (ML)/DL methods, highlighting the main open issues and providing hints for future directions.
Explainable Artificial Intelligence for Magnetic Resonance Imaging Aging Brainprints: Grounds and challenges
	
	
	
		
		
		
		
		
	
	
	
	
	
	
	
	
		
		
		
		
		
			
			
			
		
		
		
		
			
			
				
				
					
					
					
					
						
							
						
						
					
				
				
				
				
				
				
				
				
				
				
				
			
			
		
			
			
				
				
					
					
					
					
						
							
						
						
					
				
				
				
				
				
				
				
				
				
				
				
			
			
		
			
			
				
				
					
					
					
					
						
							
						
						
					
				
				
				
				
				
				
				
				
				
				
				
			
			
		
			
			
				
				
					
					
					
					
						
							
						
						
					
				
				
				
				
				
				
				
				
				
				
				
			
			
		
			
			
				
				
					
					
					
					
						
						
							
							
						
					
				
				
				
				
				
				
				
				
				
				
				
			
			
		
			
			
				
				
					
					
					
					
						
							
						
						
					
				
				
				
				
				
				
				
				
				
				
				
			
			
		
			
			
				
				
					
					
					
					
						
							
						
						
					
				
				
				
				
				
				
				
				
				
				
				
			
			
		
		
		
		
	
Boscolo Galazzo, Ilaria
;Cruciani, Federica;Brusini, Lorenza;Salih, Ahmed;Storti, Silvia Francesca;Menegaz, Gloria
	
		
		
	
			2022-01-01
Abstract
Marked changes occur in the brain during people's lives, and individual rates of aging have revealed pronounced differences, giving rise to subject-specific brainprints that are the signature of the brain. These are shaped by a great variety of factors, both endogenous and exogenous. Accurate predictions of brain age (BA) can be derived from neuroimaging endophenotypes by using machine and deep learning (DL) techniques. Predictive models leading to accurate estimates while revealing which features contribute the most to final predictions are key to unveiling the mechanisms underlying the evolution of brain aging patterns. Explainable artificial intelligence (XAI) methods are emerging as enabling technology in different fields, and biomedicine is no exception. Within this framework, this article examines BA and presents a comprehensive review of recent advances in the exploitation of explainable machine learning (ML)/DL methods, highlighting the main open issues and providing hints for future directions.| File | Dimensione | Formato | |
|---|---|---|---|
| 
									
										
										
										
										
											
												
												
												    
												
											
										
									
									
										
										
											IEEE Xplore Full-Text PDF:.pdf.pdf
										
																				
									
										
											 non disponibili 
											Descrizione: paper
										 
									
									
									
										
											Tipologia:
											Versione dell'editore
										 
									
									
									
									
										
											Licenza:
											
											
												Copyright dell'editore
												
												
												
											
										 
									
									
										Dimensione
										2.03 MB
									 
									
										Formato
										Adobe PDF
									 
										
										
								 | 
								2.03 MB | Adobe PDF | Visualizza/Apri Richiedi una copia | 
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.



