The use of low-cost immersive virtual reality systems is rapidly expanding. Several studies started to analyse the accuracy of virtual reality tracking systems, but they did not consider in depth the effects of external interferences in the working area. In line with that, this study aimed at exploring the static-positional accuracy and the robustness to occlusions inside the capture volume of the SteamVR (1.0) tracking system. To do so, we ran 3 different tests in which we acquired the position of HTC Vive PRO Trackers (2018 version) on specific points of a grid drawn on the floor, in regular tracking conditions and with partial and total occlusions. The tracking system showed a high inter- and intra-rater reliability and detected a tilted surface with respect to the floor plane. Every acquisition was characterised by an initial random offset. We estimated an average accuracy of 0.5 +/- 0.2 cm across the entire grid (XY-plane), noticing that the central points were more accurate (0.4 +/- 0.1 cm) than the outer ones (0.6 +/- 0.1 cm). For the Z-axis, the measurements showed greater variability and the accuracy was equal to 1.7 +/- 1.2 cm. Occlusion response was tested using nonparametric Bland-Altman statistics, which highlighted the robustness of the tracking system. In conclusion, our results promote the SteamVR system for static measures in the clinical field. The computed error can be considered clinically irrelevant for exercises aimed at the rehabilitation of functional movements, whose several motor outcomes are generally measured on the scale of metres.

Robustness and static-positional accuracy of the SteamVR 1.0 virtual reality tracking system

Simone Battista;
2022-01-01

Abstract

The use of low-cost immersive virtual reality systems is rapidly expanding. Several studies started to analyse the accuracy of virtual reality tracking systems, but they did not consider in depth the effects of external interferences in the working area. In line with that, this study aimed at exploring the static-positional accuracy and the robustness to occlusions inside the capture volume of the SteamVR (1.0) tracking system. To do so, we ran 3 different tests in which we acquired the position of HTC Vive PRO Trackers (2018 version) on specific points of a grid drawn on the floor, in regular tracking conditions and with partial and total occlusions. The tracking system showed a high inter- and intra-rater reliability and detected a tilted surface with respect to the floor plane. Every acquisition was characterised by an initial random offset. We estimated an average accuracy of 0.5 +/- 0.2 cm across the entire grid (XY-plane), noticing that the central points were more accurate (0.4 +/- 0.1 cm) than the outer ones (0.6 +/- 0.1 cm). For the Z-axis, the measurements showed greater variability and the accuracy was equal to 1.7 +/- 1.2 cm. Occlusion response was tested using nonparametric Bland-Altman statistics, which highlighted the robustness of the tracking system. In conclusion, our results promote the SteamVR system for static measures in the clinical field. The computed error can be considered clinically irrelevant for exercises aimed at the rehabilitation of functional movements, whose several motor outcomes are generally measured on the scale of metres.
2022
Virtual reality
Accuracy testing
Tracker occlusion
Validation Study [Publication Type]
SteamVR tracking
HTC Vive PRO
File in questo prodotto:
File Dimensione Formato  
Publication 12.pdf

accesso aperto

Tipologia: Versione dell'editore
Licenza: Creative commons
Dimensione 5.48 MB
Formato Adobe PDF
5.48 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11562/1060021
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 9
  • ???jsp.display-item.citation.isi??? 7
social impact