Various studies report that Tb3+/Yb3+ co-doped materials can split one UV or 488 nm (visible) photon in two near infrared (NIR) photons at 980 nm by an energy-transfer process involving one Tb3+ and two Yb3+ ions. Additionally, it was demonstrated that Ag multimers can provide an efficient optical sensitizing effect for rare earth ions (RE3+ ions), resulting in a broadband enhanced excitation, which could have a significant technological impact, overcoming their limited spectral absorptions and small excitation cross sections. However, a systematic and detailed investigation of the down-conversion process enhanced by Ag nanoaggregates is still lacking, which is the focus of this paper. Specifically, a step by step analysis of the energy-transfer quantumcutting chain in Ag-exchanged Tb3+/Yb3+ co-doped glasses and glass-ceramics is presented. Moreover, the direct Ag-Yb3+ energy-transfer is also considered. Results of structural, compositional, and optical characterizations are given, providing quantitative data for the efficient broadband Ag-sensitization of Tb3+/Yb3+ quantum cutting. A deeper understanding of the physical processes beneath the optical properties of the developed materials will allow a wiser realization of more efficient energy-related devices, such as spectral converters for silicon solar cells and light-emitting devices (LEDs) in the visible and NIR spectral regions.

Ag-sensitized Tb3$mathplus$/Yb3$mathplus$ codoped silica-zirconia glasses and glass-ceramics: Systematic and detailed investigation of the broadband energy-transfer and downconversion processes

Francesco Enrichi
;
2021-01-01

Abstract

Various studies report that Tb3+/Yb3+ co-doped materials can split one UV or 488 nm (visible) photon in two near infrared (NIR) photons at 980 nm by an energy-transfer process involving one Tb3+ and two Yb3+ ions. Additionally, it was demonstrated that Ag multimers can provide an efficient optical sensitizing effect for rare earth ions (RE3+ ions), resulting in a broadband enhanced excitation, which could have a significant technological impact, overcoming their limited spectral absorptions and small excitation cross sections. However, a systematic and detailed investigation of the down-conversion process enhanced by Ag nanoaggregates is still lacking, which is the focus of this paper. Specifically, a step by step analysis of the energy-transfer quantumcutting chain in Ag-exchanged Tb3+/Yb3+ co-doped glasses and glass-ceramics is presented. Moreover, the direct Ag-Yb3+ energy-transfer is also considered. Results of structural, compositional, and optical characterizations are given, providing quantitative data for the efficient broadband Ag-sensitization of Tb3+/Yb3+ quantum cutting. A deeper understanding of the physical processes beneath the optical properties of the developed materials will allow a wiser realization of more efficient energy-related devices, such as spectral converters for silicon solar cells and light-emitting devices (LEDs) in the visible and NIR spectral regions.
2021
Rare-earth ions
Ag multimers
Tb
Yb
Down-conversion
Glass-ceramics
Silica-zirconia
File in questo prodotto:
File Dimensione Formato  
117_2021_Enrichi_CeramicsInt.pdf

accesso aperto

Tipologia: Versione dell'editore
Licenza: Creative commons
Dimensione 7.63 MB
Formato Adobe PDF
7.63 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11562/1059956
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 11
  • ???jsp.display-item.citation.isi??? 10
social impact