In this minireview, we give an overview on the use of the chiral molecule trans-1,2-diaminocyclohexane (DACH) in several fields of application. This chiral backbone is present in a variety of metal complexes which are employed in (enantioselective) catalysis, chiral discrimination, molecular recognition and supramolecular chemistry. Metal extraction and biochemical and pharmaceutical applications also use the DACH molecule. This contribution is particularly focused on the interesting chemical-physical properties discussed so far in the literature concerning lanthanide-based complexes containing chiral ligands characterized by the presence of DACH in the structure. In particular, the interconnection between luminescence (total and circularly polarized), structure and thermodynamics of Eu(III), Tb(III) and Sm(III) complexes will be discussed also in light of their use as optical or chiroptical probes for the sensing of important analytes dissolved in aprotic and protic polar solvents. Several complexes show potential interest in the solid state as phosphors for light emitting devices or for the detection of volatile organic compounds.
Lanthanide‐Based Complexes Containing a Chiral trans‐1,2‐Diaminocyclohexane (DACH) Backbone: Spectroscopic Properties and Potential Applications
	
	
	
		
		
		
		
		
	
	
	
	
	
	
	
	
		
		
		
		
		
			
			
			
		
		
		
		
			
			
				
				
					
					
					
					
						
							
						
						
					
				
				
				
				
				
				
				
				
				
				
				
			
			
		
			
			
				
				
					
					
					
					
						
							
						
						
					
				
				
				
				
				
				
				
				
				
				
				
			
			
		
			
			
				
				
					
					
					
					
						
							
						
						
					
				
				
				
				
				
				
				
				
				
				
				
			
			
		
			
			
				
				
					
					
					
					
						
						
							
							
						
					
				
				
				
				
				
				
				
				
				
				
				
			
			
		
			
			
				
				
					
					
					
					
						
						
							
							
						
					
				
				
				
				
				
				
				
				
				
				
				
			
			
		
			
			
				
				
					
					
					
					
						
						
							
							
						
					
				
				
				
				
				
				
				
				
				
				
				
			
			
		
			
			
				
				
					
					
					
					
						
						
							
							
						
					
				
				
				
				
				
				
				
				
				
				
				
			
			
		
		
		
		
	
Piccinelli, Fabio
;Nardon, Chiara;Bettinelli, Marco;
	
		
		
	
			2022-01-01
Abstract
In this minireview, we give an overview on the use of the chiral molecule trans-1,2-diaminocyclohexane (DACH) in several fields of application. This chiral backbone is present in a variety of metal complexes which are employed in (enantioselective) catalysis, chiral discrimination, molecular recognition and supramolecular chemistry. Metal extraction and biochemical and pharmaceutical applications also use the DACH molecule. This contribution is particularly focused on the interesting chemical-physical properties discussed so far in the literature concerning lanthanide-based complexes containing chiral ligands characterized by the presence of DACH in the structure. In particular, the interconnection between luminescence (total and circularly polarized), structure and thermodynamics of Eu(III), Tb(III) and Sm(III) complexes will be discussed also in light of their use as optical or chiroptical probes for the sensing of important analytes dissolved in aprotic and protic polar solvents. Several complexes show potential interest in the solid state as phosphors for light emitting devices or for the detection of volatile organic compounds.| File | Dimensione | Formato | |
|---|---|---|---|
| 
									
										
										
										
										
											
												
												
												    
												
											
										
									
									
										
										
											chemphotochem 2022.pdf
										
																				
									
										
											 accesso aperto 
											Tipologia:
											Versione dell'editore
										 
									
									
									
									
										
											Licenza:
											
											
												Creative commons
												
												
													
													
													
												
												
											
										 
									
									
										Dimensione
										3.45 MB
									 
									
										Formato
										Adobe PDF
									 
										
										
								 | 
								3.45 MB | Adobe PDF | Visualizza/Apri | 
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.



