Luminescent characteristics of K3Lu(PO4)2:Pr3+ (1 and 5 mol.%) microcrystalline powders, a promising optical material for scintillation applications, were investigated using various experimental techniques. The material shows emission features connected with both high intensity interconfigurational 4f15d→4f2 transitions (broad UV emission bands) and intraconfigurational 4f2→4f2 transitions (weak emission lines in the visible range). The output of X-ray excited 4f15d→4f2 emission of Pr3+ increases with a temperature rise from 90 K to room tem- perature and higher depending on the Pr3+ ions concentration. The high 5% concentration of Pr3+ ions is found to be favourable for the stabilization of a monoclinic phase (P21/m space group) over a trigonal one (P3 space group) while emission properties of the material reveal that a phase transition occurs at higher temperatures. Decay kinetics of Pr3+ 4f15d→4f2 emission are recorded upon excitation with high repetition rate X-ray syn- chrotron excitation and pulse cathode ray excitation. Issues related to a non-exponential decay of luminescence and presence of slow decay components are discussed in terms of energy transfer dynamics. The presence of defects was revealed with thermoluminescence measurements and these are suggested to be the mainly responsible for delayed recombination of charge carriers on the Pr3+ 4f15d states. Some peculiarities of host-to- impurity energy transfer are discussed

Phase transition, radio- and photoluminescence of K3Lu(PO4)2 doped with Pr3+ ions

Piccinelli, Fabio;Bettinelli, Marco
2021-01-01

Abstract

Luminescent characteristics of K3Lu(PO4)2:Pr3+ (1 and 5 mol.%) microcrystalline powders, a promising optical material for scintillation applications, were investigated using various experimental techniques. The material shows emission features connected with both high intensity interconfigurational 4f15d→4f2 transitions (broad UV emission bands) and intraconfigurational 4f2→4f2 transitions (weak emission lines in the visible range). The output of X-ray excited 4f15d→4f2 emission of Pr3+ increases with a temperature rise from 90 K to room tem- perature and higher depending on the Pr3+ ions concentration. The high 5% concentration of Pr3+ ions is found to be favourable for the stabilization of a monoclinic phase (P21/m space group) over a trigonal one (P3 space group) while emission properties of the material reveal that a phase transition occurs at higher temperatures. Decay kinetics of Pr3+ 4f15d→4f2 emission are recorded upon excitation with high repetition rate X-ray syn- chrotron excitation and pulse cathode ray excitation. Issues related to a non-exponential decay of luminescence and presence of slow decay components are discussed in terms of energy transfer dynamics. The presence of defects was revealed with thermoluminescence measurements and these are suggested to be the mainly responsible for delayed recombination of charge carriers on the Pr3+ 4f15d states. Some peculiarities of host-to- impurity energy transfer are discussed
K3Lu(PO4)2Pr3+ 4f15d→4f2 transitions; Defects; Host-to-impurity energy transfer; Radioluminescence; Phase transitions
File in questo prodotto:
File Dimensione Formato  
JLumin 2021.pdf

accesso aperto

Tipologia: Versione dell'editore
Licenza: Dominio pubblico
Dimensione 2.3 MB
Formato Adobe PDF
2.3 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11562/1058760
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 7
  • ???jsp.display-item.citation.isi??? 5
social impact