Antiseizure medications are the cornerstone pharmacotherapy for epilepsy. They are not devoid of side effects. In search for better-tolerated antiseizure agents, cannabinoid compounds and other N-acylethanolamines not directly binding cannabinoid receptors have drawn significant attention. Among these, palmitoylethanolamide (PEA) has shown neuroprotective, anti-inflammatory, and analgesic properties. All studies examining PEA's role in epilepsy and acute seizures were systematically reviewed. Preclinical studies indicated a systematically reduced PEA tone accompanied by alterations of endocannabinoid levels. PEA supplementation reduced seizure frequency and severity in animal models of epilepsy and acute seizures, in some cases, similarly to available antiseizure medications but with a better safety profile. The peripheral-brain immune system seemed to be more effectively modulated by subchronic pretreatment with PEA, with positive consequences in terms of better responding to subsequent epileptogenic insults. PEA treatment restored the endocannabinoid level changes that occur in a seizure episode, with potential preventive implications in terms of neural damage. Neurobiological mechanisms for PEA antiseizure effect seemed to include the activation of the endocannabinoid system and the modulation of neuroinflammation and excitotoxicity. Although no human study was identified, there is ground for testing the antiseizure potential of PEA and its safety profile in human studies of epilepsy.

Is it time to test the antiseizure potential of Palmitoylethanolamide in human studies? A systematic review of preclinical evidence

Bortoletto, Riccardo;
2022-01-01

Abstract

Antiseizure medications are the cornerstone pharmacotherapy for epilepsy. They are not devoid of side effects. In search for better-tolerated antiseizure agents, cannabinoid compounds and other N-acylethanolamines not directly binding cannabinoid receptors have drawn significant attention. Among these, palmitoylethanolamide (PEA) has shown neuroprotective, anti-inflammatory, and analgesic properties. All studies examining PEA's role in epilepsy and acute seizures were systematically reviewed. Preclinical studies indicated a systematically reduced PEA tone accompanied by alterations of endocannabinoid levels. PEA supplementation reduced seizure frequency and severity in animal models of epilepsy and acute seizures, in some cases, similarly to available antiseizure medications but with a better safety profile. The peripheral-brain immune system seemed to be more effectively modulated by subchronic pretreatment with PEA, with positive consequences in terms of better responding to subsequent epileptogenic insults. PEA treatment restored the endocannabinoid level changes that occur in a seizure episode, with potential preventive implications in terms of neural damage. Neurobiological mechanisms for PEA antiseizure effect seemed to include the activation of the endocannabinoid system and the modulation of neuroinflammation and excitotoxicity. Although no human study was identified, there is ground for testing the antiseizure potential of PEA and its safety profile in human studies of epilepsy.
2022
acylethanolamines
cannabinoids
convulsion
glutamate
immune response
inflammation
neurology
peroxisome proliferator-activated receptor-α
seizure
File in questo prodotto:
File Dimensione Formato  
brainsci-12-00101-v2.pdf

accesso aperto

Descrizione: CC BY 4.0 publisher version
Tipologia: Versione dell'editore
Licenza: Creative commons
Dimensione 487.26 kB
Formato Adobe PDF
487.26 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11562/1056459
Citazioni
  • ???jsp.display-item.citation.pmc??? 4
  • Scopus 11
  • ???jsp.display-item.citation.isi??? 9
social impact