We consider the category Qcoh$mathbb{X}$ of quasicoherent sheaves where $mathbb{X}$ is a weighted noncommutative regular projective curve over a field $k$. This category is a hereditary, locally noetherian Grothendieck category. We classify all indecomposable pure-injective sheaves and all cotilting sheaves of slope $infty$. In the cases of nonnegative orbifold Euler characteristic this leads to a classification of pure-injective indecomposable sheaves and a description of all large cotilting sheaves in Qcoh$mathbb{X}$.
Cotilting Sheaves over Weighted Noncommutative Regular Projective Curves
Kussin, Dirk;Laking, Rosanna
2020-01-01
Abstract
We consider the category Qcoh$mathbb{X}$ of quasicoherent sheaves where $mathbb{X}$ is a weighted noncommutative regular projective curve over a field $k$. This category is a hereditary, locally noetherian Grothendieck category. We classify all indecomposable pure-injective sheaves and all cotilting sheaves of slope $infty$. In the cases of nonnegative orbifold Euler characteristic this leads to a classification of pure-injective indecomposable sheaves and a description of all large cotilting sheaves in Qcoh$mathbb{X}$.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
LakingKussin.pdf
accesso aperto
Descrizione: Articolo principale
Tipologia:
Documento in Post-print
Licenza:
Creative commons
Dimensione
489.76 kB
Formato
Adobe PDF
|
489.76 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.