We consider the category Qcoh$mathbb{X}$ of quasicoherent sheaves where $mathbb{X}$ is a weighted noncommutative regular projective curve over a field $k$. This category is a hereditary, locally noetherian Grothendieck category. We classify all indecomposable pure-injective sheaves and all cotilting sheaves of slope $infty$. In the cases of nonnegative orbifold Euler characteristic this leads to a classification of pure-injective indecomposable sheaves and a description of all large cotilting sheaves in Qcoh$mathbb{X}$.
Titolo: | Cotilting Sheaves over Weighted Noncommutative Regular Projective Curves | |
Autori: | LAKING, Rosanna Davison (Corresponding) | |
Data di pubblicazione: | 2020 | |
Rivista: | ||
Handle: | http://hdl.handle.net/11562/1056327 | |
Appare nelle tipologie: | 01.01 Articolo in Rivista |
File in questo prodotto:
File | Descrizione | Tipologia | Licenza | |
---|---|---|---|---|
LakingKussin.pdf | Articolo principale | Documento in Post-print | ![]() | Open Access Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.