We give a computational interpretation to an abstract formulation of Krull's theorem, by analysing its classical proof based on Zorn's lemma. Our approach is inspired by proof theory, and uses a form of update recursion to replace the existence of maximal ideals. Our main result allows us to derive, in a uniform way, algorithms which compute witnesses for existential theorems in countable abstract algebra. We give a number of concrete examples of this phenomenon, including the prime ideal theorem and Krull's theorem on valuation rings.

A universal algorithm for Krull's theorem

Powell, Thomas;Schuster, Peter;
In corso di stampa

Abstract

We give a computational interpretation to an abstract formulation of Krull's theorem, by analysing its classical proof based on Zorn's lemma. Our approach is inspired by proof theory, and uses a form of update recursion to replace the existence of maximal ideals. Our main result allows us to derive, in a uniform way, algorithms which compute witnesses for existential theorems in countable abstract algebra. We give a number of concrete examples of this phenomenon, including the prime ideal theorem and Krull's theorem on valuation rings.
Krull's theorem, Maximal ideals, Program extraction, Constructive algebra
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11562/1056279
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? ND
social impact