We give a computational interpretation to an abstract formulation of Krull's theorem, by analysing its classical proof based on Zorn's lemma. Our approach is inspired by proof theory, and uses a form of update recursion to replace the existence of maximal ideals. Our main result allows us to derive, in a uniform way, algorithms which compute witnesses for existential theorems in countable abstract algebra. We give a number of concrete examples of this phenomenon, including the prime ideal theorem and Krull's theorem on valuation rings.
A universal algorithm for Krull's theorem
Powell, Thomas;Schuster, Peter;
2022-01-01
Abstract
We give a computational interpretation to an abstract formulation of Krull's theorem, by analysing its classical proof based on Zorn's lemma. Our approach is inspired by proof theory, and uses a form of update recursion to replace the existence of maximal ideals. Our main result allows us to derive, in a uniform way, algorithms which compute witnesses for existential theorems in countable abstract algebra. We give a number of concrete examples of this phenomenon, including the prime ideal theorem and Krull's theorem on valuation rings.File in questo prodotto:
Non ci sono file associati a questo prodotto.
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.