Rational exponential integrators (REXI) are a class of numerical methods that are well suited for the time integration of linear partial differential equations with imaginary eigenvalues. Since these methods can be parallelized in time (in addition to the spatial parallelization that is commonly performed) they are well suited to exploit modern high performance computing systems. In this paper, we propose a novel REXI scheme that drastically improves accuracy and efficiency. The chosen approach will also allow us to easily determine how many terms are required in the approximation in order to obtain accurate results. We provide comparative numerical simulations for a shallow water equation that highlight the efficiency of our approach and demonstrate that REXI schemes can be efficiently implemented on graphic processing units.
An accurate and time-parallel rational exponential integrator for hyperbolic and oscillatory PDEs
Caliari, Marco;Einkemmer, Lukas;Moriggl, Alexander
;Ostermann, Alexander
2021-01-01
Abstract
Rational exponential integrators (REXI) are a class of numerical methods that are well suited for the time integration of linear partial differential equations with imaginary eigenvalues. Since these methods can be parallelized in time (in addition to the spatial parallelization that is commonly performed) they are well suited to exploit modern high performance computing systems. In this paper, we propose a novel REXI scheme that drastically improves accuracy and efficiency. The chosen approach will also allow us to easily determine how many terms are required in the approximation in order to obtain accurate results. We provide comparative numerical simulations for a shallow water equation that highlight the efficiency of our approach and demonstrate that REXI schemes can be efficiently implemented on graphic processing units.File | Dimensione | Formato | |
---|---|---|---|
CEMO21.pdf
solo utenti autorizzati
Tipologia:
Versione dell'editore
Licenza:
Copyright dell'editore
Dimensione
959.73 kB
Formato
Adobe PDF
|
959.73 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.