One of the mechanisms that characterizes the aging process of different organs is the accumulation of fat. Different authors have demonstrated that adipose tissue replaces the loss of other cell types, deriving from mesenchymal cells. During aging, there is substitution or trans-differentiation of mesenchymal cells with other cells having the same embryological origin. Newly formed adipocytes were also observed in the trabecular matrix of elderly people's bones, associated with myeloid cells. In this study, we have investigated the relationship between immature myeloid-derived suppressor cells (I-MDSCs) and mesenchymal stem cells (MSCs) in bone marrow (BM) samples harvested from 57 patients subjected to different orthopedic surgeries. Patients aged from 18 to 92 years were considered in order to compare the cellular composition of bone marrow of young and elderly people, considered a biomarker of immunity, inflammation, and bone preservation. The I-MDSC percentage was stable during aging, but in elderly people, it was possible to observe a strong basal immunosuppression of autologous and heterologous T cells' proliferation. We hypothesized that this pattern observed in elders depends on the progressive accumulation in the BM of activating stimuli, including cell-cell contact, or the production of different cytokines and proteins that induce the differentiation of bone marrow mesenchymal stem cells in adipocytes. The collected data provided underline the importance of specific biomarkers of aging that promote a reduction in immune response and incremented inflammatory pathways, leading to bone reabsorption in elderly people.

The cross-talk between myeloid and mesenchymal stem cells of human bone marrow represents a biomarker of aging that regulates immune response and bone reabsorption

Perico, Maria Elisa
;
Maluta, Tommaso;Conti, Giamaica;Vella, Antonio;Provezza, Lisa;Cestari, Tiziana;De Cao, Giulia;Segalla, Lydia;Tecchio, Cristina;Benedetti, Fabio;Bronte, Vincenzo;Magnan, Bruno;Sbarbati, Andrea;Ramarli, Dunia
2022-01-01

Abstract

One of the mechanisms that characterizes the aging process of different organs is the accumulation of fat. Different authors have demonstrated that adipose tissue replaces the loss of other cell types, deriving from mesenchymal cells. During aging, there is substitution or trans-differentiation of mesenchymal cells with other cells having the same embryological origin. Newly formed adipocytes were also observed in the trabecular matrix of elderly people's bones, associated with myeloid cells. In this study, we have investigated the relationship between immature myeloid-derived suppressor cells (I-MDSCs) and mesenchymal stem cells (MSCs) in bone marrow (BM) samples harvested from 57 patients subjected to different orthopedic surgeries. Patients aged from 18 to 92 years were considered in order to compare the cellular composition of bone marrow of young and elderly people, considered a biomarker of immunity, inflammation, and bone preservation. The I-MDSC percentage was stable during aging, but in elderly people, it was possible to observe a strong basal immunosuppression of autologous and heterologous T cells' proliferation. We hypothesized that this pattern observed in elders depends on the progressive accumulation in the BM of activating stimuli, including cell-cell contact, or the production of different cytokines and proteins that induce the differentiation of bone marrow mesenchymal stem cells in adipocytes. The collected data provided underline the importance of specific biomarkers of aging that promote a reduction in immune response and incremented inflammatory pathways, leading to bone reabsorption in elderly people.
2022
IL-6
adipogenesis
aging
bone marrow
suppression
File in questo prodotto:
File Dimensione Formato  
cells-11-00001.pdf

accesso aperto

Descrizione: CC BY 4.0 publisher version
Tipologia: Versione dell'editore
Licenza: Creative commons
Dimensione 2.99 MB
Formato Adobe PDF
2.99 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11562/1055360
Citazioni
  • ???jsp.display-item.citation.pmc??? 1
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 2
social impact