In the last two decades, a growing interest has been focused on gait and balance robot-assisted rehabilitation in children with neurological disabilities. Robotic devices allow the implementation of intensive, task-specific training fostering functional recovery and neuroplasticity phenomena. However, limited attention has been paid to the protocols used in this research framework. This systematic review aims to provide an overview of the existing literature on robotic systems for the rehabilitation of gait and balance in children with neurological disabilities and their rehabilitation applications. The literature search was carried out independently and synchronously by three authors on the following databases: MEDLINE, Cochrane Library, PeDro, Institute of Electrical and Electronics Engineers, ScienceDirect, and Google Scholar. The data collected included three subsections referring to clinical, technical, and regulatory aspects. Thirty-one articles out of 81 found on the primary literature search were included in the systematic review. Most studies involved children with cerebral palsy. Only one-third of the studies were randomized controlled trials. Overall, 17 devices (nine end-effector systems and eight exoskeletons) were investigated, among which only 4 (24%) were bore the CE mark. Studies differ on rehabilitation protocols duration, intensity, and outcome measures. Future research should improve both rehabilitation protocols’ and devices’ descriptions.

Electromechanical and robotic devices for gait and balance rehabilitation of children with neurological disability: a systematic review

Valè, Nicola;Gandolfi, Marialuisa
;
Botticelli, Anita;Dell’Orco, Antonella;Dimitrova, Eleonora;Antonini, Arianna;Mazzon, Stefano;Picelli, Alessandro;Smania, Nicola;
2021-01-01

Abstract

In the last two decades, a growing interest has been focused on gait and balance robot-assisted rehabilitation in children with neurological disabilities. Robotic devices allow the implementation of intensive, task-specific training fostering functional recovery and neuroplasticity phenomena. However, limited attention has been paid to the protocols used in this research framework. This systematic review aims to provide an overview of the existing literature on robotic systems for the rehabilitation of gait and balance in children with neurological disabilities and their rehabilitation applications. The literature search was carried out independently and synchronously by three authors on the following databases: MEDLINE, Cochrane Library, PeDro, Institute of Electrical and Electronics Engineers, ScienceDirect, and Google Scholar. The data collected included three subsections referring to clinical, technical, and regulatory aspects. Thirty-one articles out of 81 found on the primary literature search were included in the systematic review. Most studies involved children with cerebral palsy. Only one-third of the studies were randomized controlled trials. Overall, 17 devices (nine end-effector systems and eight exoskeletons) were investigated, among which only 4 (24%) were bore the CE mark. Studies differ on rehabilitation protocols duration, intensity, and outcome measures. Future research should improve both rehabilitation protocols’ and devices’ descriptions.
2021
cerebral palsy
paediatric neurorehabilitation
robotics
rehabilitation paediatric
File in questo prodotto:
File Dimensione Formato  
applsci-11-12061-v2.pdf

accesso aperto

Descrizione: CC BY 4.0 publisher version
Tipologia: Versione dell'editore
Licenza: Creative commons
Dimensione 471.13 kB
Formato Adobe PDF
471.13 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11562/1054447
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 2
social impact