Thanks to its favorable properties, the multivariate normal distribution is still largely employed for modeling phenomena in various scientific fields. However, when the number of components $p$ is of the same asymptotic order as the sample size $n$, standard inferential techniques are generally inadequate to conduct hypothesis testing on the mean vector and/or the covariance matrix. Within several prominent frameworks, we propose then to draw reliable conclusions via a directional test. We show that under the null hypothesis the directional $p$-value is exactly uniformly distributed even when $p$ is of the same order of $n$, provided that conditions for the existence of the maximum likelihood estimate for the normal model are satisfied. Extensive simulation results confirm the theoretical findings across different values of $p/n$, and show that the proposed approach outperforms not only the usual finite-$p$ approaches but also alternative methods tailored for high-dimensional settings.

Directional testing for high-dimensional multivariate normal distributions

C. Di Caterina;
2021

Abstract

Thanks to its favorable properties, the multivariate normal distribution is still largely employed for modeling phenomena in various scientific fields. However, when the number of components $p$ is of the same asymptotic order as the sample size $n$, standard inferential techniques are generally inadequate to conduct hypothesis testing on the mean vector and/or the covariance matrix. Within several prominent frameworks, we propose then to draw reliable conclusions via a directional test. We show that under the null hypothesis the directional $p$-value is exactly uniformly distributed even when $p$ is of the same order of $n$, provided that conditions for the existence of the maximum likelihood estimate for the normal model are satisfied. Extensive simulation results confirm the theoretical findings across different values of $p/n$, and show that the proposed approach outperforms not only the usual finite-$p$ approaches but also alternative methods tailored for high-dimensional settings.
Bartlett correction
exponential family Model
saddlepoint approximation
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11562/1052819
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact