We introduce a class of probability measure-valued diffusions, coined polynomial, of which the well-known Fleming–Viot process is a particular example. The defining property of finite dimensional polynomial processes considered in [8, 21] is transferred to this infinite dimensional setting. This leads to a representation of conditional marginal moments via a finite dimensional linear PDE, whose spatial dimension corresponds to the degree of the moment. As a result, the tractability of finite dimensional polynomial processes are preserved in this setting. We also obtain a representation of the corresponding extended generators, and prove well-posedness of the associated martingale problems. In particular, uniqueness is obtained from the duality relationship with the PDEs mentioned above.

Probability measure-valued polynomial diffusions

Christa Cuchiero;Sara Svaluto-Ferro
2019-01-01

Abstract

We introduce a class of probability measure-valued diffusions, coined polynomial, of which the well-known Fleming–Viot process is a particular example. The defining property of finite dimensional polynomial processes considered in [8, 21] is transferred to this infinite dimensional setting. This leads to a representation of conditional marginal moments via a finite dimensional linear PDE, whose spatial dimension corresponds to the degree of the moment. As a result, the tractability of finite dimensional polynomial processes are preserved in this setting. We also obtain a representation of the corresponding extended generators, and prove well-posedness of the associated martingale problems. In particular, uniqueness is obtained from the duality relationship with the PDEs mentioned above.
2019
probability measure-valued processes
Dual process
Fleming–Viot type processes
Martingale problem
interacting particle systems
maximum principle
Polynomial processes
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11562/1051762
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 14
  • ???jsp.display-item.citation.isi??? 11
social impact