Nitrogen deficiency and drought stress are among the major stresses faced by plants with negative consequence on crop production. The use of plant biostimulants is a very promising application in agriculture to improve crop yield, but especially to prevent the effect of abiotic stresses. Algae-derived biostimulants represent an efficient tool to stimulate the root development: while macroalgae have already been widely adopted as a source of biostimulants to improve plants growth and resilience, far less information is available for microalgae. The objective of this work is to investigate the stimulant ability on maize roots of two green algae species, Chlamydomonas reinhardtii and Chlorella sorokiniana, being respectively the model organism for Chlorophyta and one of the most promising species for microalgae cultivation at industrial scale. The results obtained demonstrate that both C. reinhardtii and C. sorokiniana cells promoted the development of maize root system compared to the untreated negative control. C. sorokiniana specifically increased the number of secondary roots, while improved micro-nutrients accumulation on roots and shoots was measured in the case of C. reinhardtii treated plants. When these microalgae-derived biostimulants were applied on plants grown in stress conditions as nitrogen deficiency, improved development of the root system was measured in the case of plants treated with C. sorokiniana biomass. Microalgae cultivation for biostimulant production can thus be considered as a bio-based process providing solutions for improving plant resilience toward stress conditions.
The potential use of Chlamydomonas reinhardtii and Chlorella sorokiniana as biostimulants on maize plants
Martini, Flavio;Beghini, Giorgia;Varanini, Zeno;Zamboni, Anita;Ballottari, Matteo
2021-01-01
Abstract
Nitrogen deficiency and drought stress are among the major stresses faced by plants with negative consequence on crop production. The use of plant biostimulants is a very promising application in agriculture to improve crop yield, but especially to prevent the effect of abiotic stresses. Algae-derived biostimulants represent an efficient tool to stimulate the root development: while macroalgae have already been widely adopted as a source of biostimulants to improve plants growth and resilience, far less information is available for microalgae. The objective of this work is to investigate the stimulant ability on maize roots of two green algae species, Chlamydomonas reinhardtii and Chlorella sorokiniana, being respectively the model organism for Chlorophyta and one of the most promising species for microalgae cultivation at industrial scale. The results obtained demonstrate that both C. reinhardtii and C. sorokiniana cells promoted the development of maize root system compared to the untreated negative control. C. sorokiniana specifically increased the number of secondary roots, while improved micro-nutrients accumulation on roots and shoots was measured in the case of C. reinhardtii treated plants. When these microalgae-derived biostimulants were applied on plants grown in stress conditions as nitrogen deficiency, improved development of the root system was measured in the case of plants treated with C. sorokiniana biomass. Microalgae cultivation for biostimulant production can thus be considered as a bio-based process providing solutions for improving plant resilience toward stress conditions.File | Dimensione | Formato | |
---|---|---|---|
1-s2.0-S2211926421003349-main (1).pdf
accesso aperto
Tipologia:
Documento in Post-print
Licenza:
Creative commons
Dimensione
3.58 MB
Formato
Adobe PDF
|
3.58 MB | Adobe PDF | Visualizza/Apri |
1-s2.0-S2211926421003349-mmc1.pdf
accesso aperto
Tipologia:
Altro materiale allegato
Licenza:
Creative commons
Dimensione
787.21 kB
Formato
Adobe PDF
|
787.21 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.