To study proteomic changes involved in tenderization of Longissimus dorsi, Charolais heifers and bulls muscles were sampled after early and long aging (12 or 26 days). Sensory evaluation and instrumental tenderness measurement were performed. Proteins were analyzed by gel-free proteomics. By pattern recognition (principal component analysis and Kohonen's self-organizing maps) and classification (partial least squares-discriminant analysis) tools, 58 and 86 dysregulated proteins were detected after 12 and 26 days of aging, respectively. Tenderness was positively correlated mainly with metabolic enzymes (PYGM, PGAM2, TPI1, PGK1, and PFKM) and negatively with keratins. Downregulation in hemoglobin subunits and carbonic anhydrase 3 levels was relevant after 12 days of aging, while mimecan and collagen chains levels were reduced after 26 days of aging. Bioinformatics indicated that aging involves a prevalence of metabolic pathways after late and long periods. These findings provide a deeper understanding of changes involved in aging of beef and indicate a powerful method for future proteomics studies.

Kohonen Artificial Neural Network and Multivariate Analysis in the Identification of Proteome Changes during Early and Long Aging of Bovine Longissimus dorsi Muscle Using {SWATH} Mass Spectrometry

Jessica Brandi;Daniela Cecconi
2021

Abstract

To study proteomic changes involved in tenderization of Longissimus dorsi, Charolais heifers and bulls muscles were sampled after early and long aging (12 or 26 days). Sensory evaluation and instrumental tenderness measurement were performed. Proteins were analyzed by gel-free proteomics. By pattern recognition (principal component analysis and Kohonen's self-organizing maps) and classification (partial least squares-discriminant analysis) tools, 58 and 86 dysregulated proteins were detected after 12 and 26 days of aging, respectively. Tenderness was positively correlated mainly with metabolic enzymes (PYGM, PGAM2, TPI1, PGK1, and PFKM) and negatively with keratins. Downregulation in hemoglobin subunits and carbonic anhydrase 3 levels was relevant after 12 days of aging, while mimecan and collagen chains levels were reduced after 26 days of aging. Bioinformatics indicated that aging involves a prevalence of metabolic pathways after late and long periods. These findings provide a deeper understanding of changes involved in aging of beef and indicate a powerful method for future proteomics studies.
PLS-DA
SWATH-MS
chemometric techniques
supervised Kohonen networks
Cattle
Mass Spectrometry
Meat
Multivariate Analysis
Muscle, Skeletal
Proteomics
longissimus dorsi
File in questo prodotto:
File Dimensione Formato  
Brandi et al. acs.jafc.1c03578-1.pdf

accesso aperto

Tipologia: Versione dell'editore
Licenza: Dominio pubblico
Dimensione 5.74 MB
Formato Adobe PDF
5.74 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11562/1050967
Citazioni
  • ???jsp.display-item.citation.pmc??? 0
  • Scopus 1
  • ???jsp.display-item.citation.isi??? ND
social impact