Spent coffee grounds are rich in high-value compounds, such as saturate and unsaturated fatty acids, and polysaccharides. Therefore, this work investigated a cascade biorefinery to produce: i) biodiesel from coffee oils, ii) cellulose- and hemicellulose-derived fermentable sugars and iii) biomethane from the residual solid fraction after sugars extraction. Transesterification reached the best performances of 86% w/w of fatty acid methyl esters using 1:8 coffee oil/methanol ratio and 2% w/w of KOH as catalyst. The use of glycerol for the pretreatment of spent coffee grounds allowed the internal circulation of a process leftover from transesterification; thus, avoiding the use of clean water. In the best conditions, the total released fermentable sugars were about 40-50% (w/w) on dry weight basis. The low content of easily degradable compounds led to a low methane production of 50 LCH4/ kgVS, indicating the need to search for better performing alternatives to close the biorefinery loop.

Biodiesel, biogas and fermentable sugars production from Spent coffee Grounds: A cascade biorefinery approach

Battista, F
;
Zuliani, L;Rizzioli, F;Fusco, S;Bolzonella, D
2021-01-01

Abstract

Spent coffee grounds are rich in high-value compounds, such as saturate and unsaturated fatty acids, and polysaccharides. Therefore, this work investigated a cascade biorefinery to produce: i) biodiesel from coffee oils, ii) cellulose- and hemicellulose-derived fermentable sugars and iii) biomethane from the residual solid fraction after sugars extraction. Transesterification reached the best performances of 86% w/w of fatty acid methyl esters using 1:8 coffee oil/methanol ratio and 2% w/w of KOH as catalyst. The use of glycerol for the pretreatment of spent coffee grounds allowed the internal circulation of a process leftover from transesterification; thus, avoiding the use of clean water. In the best conditions, the total released fermentable sugars were about 40-50% (w/w) on dry weight basis. The low content of easily degradable compounds led to a low methane production of 50 LCH4/ kgVS, indicating the need to search for better performing alternatives to close the biorefinery loop.
2021
spent coffee grounds
biorefinery
biodiesel
enzymatic hydrolysis
fermentable sugars
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11562/1050741
Citazioni
  • ???jsp.display-item.citation.pmc??? 4
  • Scopus 32
  • ???jsp.display-item.citation.isi??? 28
social impact