Light-harvesting complex stress-related (LHCSR) proteins in green algae are essential for photoprotection via a non-photochemical quenching (NPQ), playing the dual roles of pH sensing and dissipation of chlorophylls excited-state energy. pH sensing occurs via a protonation of acidic residues located mainly on its lumen-exposed C-terminus. Here, we combine in vivo and in vitro studies to ascertain the role in NPQ of these protonatable C-terminal residues in LHCSR3 from Chlamydomonas reinhardtii. In vivo studies show that four of the residues, D239, D240, E242, and D244, are not involved in NPQ In vitro experiments on an LHCSR3 chimeric protein, obtained by a substitution of the C terminal with that of another LHC protein lacking acidic residues, show a reduction of NPQ compared to the wild type but preserve the quenching mechanism involving a charge transfer from carotenoids to chlorophylls. NPQ in LHCSR3 is thus a complex mechanism, composed of multiple contributions triggered by different acidic residues.

The Role of Acidic Residues in the C Terminal Tail of the {LHCSR}3 Protein of Chlamydomonas reinhardtii in Non-Photochemical Quenching

Federico Perozeni;Luca Zuliani;Matteo Ballottari
2021

Abstract

Light-harvesting complex stress-related (LHCSR) proteins in green algae are essential for photoprotection via a non-photochemical quenching (NPQ), playing the dual roles of pH sensing and dissipation of chlorophylls excited-state energy. pH sensing occurs via a protonation of acidic residues located mainly on its lumen-exposed C-terminus. Here, we combine in vivo and in vitro studies to ascertain the role in NPQ of these protonatable C-terminal residues in LHCSR3 from Chlamydomonas reinhardtii. In vivo studies show that four of the residues, D239, D240, E242, and D244, are not involved in NPQ In vitro experiments on an LHCSR3 chimeric protein, obtained by a substitution of the C terminal with that of another LHC protein lacking acidic residues, show a reduction of NPQ compared to the wild type but preserve the quenching mechanism involving a charge transfer from carotenoids to chlorophylls. NPQ in LHCSR3 is thus a complex mechanism, composed of multiple contributions triggered by different acidic residues.
Algal Proteins
Aspartic Acid
Carotenoids
Chlamydomonas reinhardtii
Chlorophyll
Energy Transfer
Glutamic Acid
Light
Light-Harvesting Protein Complexes
Mutation
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11562/1049516
Citazioni
  • ???jsp.display-item.citation.pmc??? 0
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 1
social impact