Longitudinal studies integrating imaging and genetic data have recently become widespread among bioinformatics researchers. Combining such heterogeneous data allows a better understanding of complex diseases origins and causes. Through a multi-view based workflow proposal, we show the common steps and tools used in imaging genetics analysis, interpolating genotyping, neuroimaging and transcriptomic data. We describe the advantages of existing methods to analyze heterogeneous datasets, using Parkinson’s Disease (PD) as a case study. Parkinson's disease is associated with both genetic and neuroimaging factors, however such imaging genetics associations are at an early investigation stage. Therefore it is desirable to have a free and open source workflow that integrates different analysis flows in order to recover potential genetic biomarkers in PD, as in other complex diseases.

Multi view based imaging genetics analysis on Parkinson disease

Cerri, Guglielmo;Tognon, Manuel;Avesani, Simone;Giugno, Rosalba
2021

Abstract

Longitudinal studies integrating imaging and genetic data have recently become widespread among bioinformatics researchers. Combining such heterogeneous data allows a better understanding of complex diseases origins and causes. Through a multi-view based workflow proposal, we show the common steps and tools used in imaging genetics analysis, interpolating genotyping, neuroimaging and transcriptomic data. We describe the advantages of existing methods to analyze heterogeneous datasets, using Parkinson’s Disease (PD) as a case study. Parkinson's disease is associated with both genetic and neuroimaging factors, however such imaging genetics associations are at an early investigation stage. Therefore it is desirable to have a free and open source workflow that integrates different analysis flows in order to recover potential genetic biomarkers in PD, as in other complex diseases.
imaging genetics, mRNA-seq analysis, GWAS
File in questo prodotto:
File Dimensione Formato  
Multi_view_based_imaging_genetics_analysis_on_Parkinson_disease.pdf

accesso aperto

Tipologia: Documento in Pre-print
Licenza: Dominio pubblico
Dimensione 511.91 kB
Formato Adobe PDF
511.91 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11562/1049080
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact