Uncertainty is unavoidable in modeling dynamical systems and it may be represented mathematically by differential inclusions. In the past, we proposed an algorithm to compute validated solutions of differential inclusions; here we provide several theoretical improvements to the algorithm, including its extension to piecewise constant and sinusoidal approximations of uncertain inputs, updates on the affine approximation bounds and a generalized formula for the analytical error. The approach proposed is able to achieve higher order convergence with respect to the current state-of-the-art. We implemented the methodology in Ariadne, a library for the verification of continuous and hybrid systems. For evaluation purposes, we introduce ten systems from the literature, with varying degrees of nonlinearity, number of variables and uncertain inputs. The results are hereby compared with two state-of-the-art approaches to timevarying uncertainties in nonlinear systems.

Higher Order Method for Differential Inclusions

Luca Geretti;Tiziano Villa
2020

Abstract

Uncertainty is unavoidable in modeling dynamical systems and it may be represented mathematically by differential inclusions. In the past, we proposed an algorithm to compute validated solutions of differential inclusions; here we provide several theoretical improvements to the algorithm, including its extension to piecewise constant and sinusoidal approximations of uncertain inputs, updates on the affine approximation bounds and a generalized formula for the analytical error. The approach proposed is able to achieve higher order convergence with respect to the current state-of-the-art. We implemented the methodology in Ariadne, a library for the verification of continuous and hybrid systems. For evaluation purposes, we introduce ten systems from the literature, with varying degrees of nonlinearity, number of variables and uncertain inputs. The results are hereby compared with two state-of-the-art approaches to timevarying uncertainties in nonlinear systems.
Differential Inclusions
Nonlinear Systems
Rigorous Numerics
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11562/1045321
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact