Purpose of the review: The neuromuscular complications of cancer therapy include chemotherapy-induced peripheral neurotoxicity (CIPN), immune-related neuromuscular complications to immune checkpoint inhibitors and radiation-induced neuropathy/plexopathy. With a wider focus on CIPN, we will discuss new pathogenetic insights, recent predictive biomarkers and emerging therapies for neuromuscular complications of cancer therapy. Recent findings: Findings from recent preclinical studies have improved our knowledge on new CIPN pathogenetic pathways, including the activation of senescence-like processes in neurons, axonal degeneration and neuroinflammation. Metabolomics and serum neurofilament light chain levels appear the most promising biomarkers to predict CIPN development and severity. There is some recent evidence of promising pharmacological compounds to prevent or treat CIPN, and new drugs are in early development and testing. Summary: A multimodal assessment, with neurophysiological, imaging and patient-reported outcome measures, coupled with the use of reliable blood or genetic biomarkers, may offer pathogenetic grounds for future preventive and symptomatic strategies for the multidisciplinary treatment of neuromuscular complications of cancer therapy.
Neuromuscular complications of cancer therapy
Mantovani, Elisa;Tamburin, Stefano
2021-01-01
Abstract
Purpose of the review: The neuromuscular complications of cancer therapy include chemotherapy-induced peripheral neurotoxicity (CIPN), immune-related neuromuscular complications to immune checkpoint inhibitors and radiation-induced neuropathy/plexopathy. With a wider focus on CIPN, we will discuss new pathogenetic insights, recent predictive biomarkers and emerging therapies for neuromuscular complications of cancer therapy. Recent findings: Findings from recent preclinical studies have improved our knowledge on new CIPN pathogenetic pathways, including the activation of senescence-like processes in neurons, axonal degeneration and neuroinflammation. Metabolomics and serum neurofilament light chain levels appear the most promising biomarkers to predict CIPN development and severity. There is some recent evidence of promising pharmacological compounds to prevent or treat CIPN, and new drugs are in early development and testing. Summary: A multimodal assessment, with neurophysiological, imaging and patient-reported outcome measures, coupled with the use of reliable blood or genetic biomarkers, may offer pathogenetic grounds for future preventive and symptomatic strategies for the multidisciplinary treatment of neuromuscular complications of cancer therapy.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.