Magnetic resonance imaging (MRI) paradigms, using non-invasive approaches, can provide relevant findings about brain aging. The attention has been primarily focused on neurodegenerative diseases, while little or nothing has been done to differentiate physiology from pathology. The present study aimed to test diffusion tensor imaging (DTI) and functional MRI (fMRI) metrics to analyze physiological age-related changes in rats at myelin structure and activation level; findings were validated by ex vivo histology. The purpose is to find comparable biomarkers in rodents and humans to allow a reliable translation from pre-clinical to clinical settings. Data evidenced: i) a significantly higher cerebrospinal fluid volume in middle-aged and aged vs. young rats; ii) a progressive alteration of white matter; iii) a significant reduction of evoked activity in aged animals. These results partially mirror the age-related changes in humans and may represent a preliminary step to find reliable tools for a lifelong monitoring with a value for the clinical practice (e.g., to provide support to the early diagnosis of dementia in asymptomatic subjects).

MRI characterization of rat brain aging at structural and functional level: Clues for translational applications

Bontempi, Pietro
;
Podda, Rachele;Daducci, Alessandro;Sonato, Nicolò;Fiorini, Silvia;Tambalo, Stefano;Mosconi, Elisa;Merigo, Flavia;Marzola, Pasquina
2021-01-01

Abstract

Magnetic resonance imaging (MRI) paradigms, using non-invasive approaches, can provide relevant findings about brain aging. The attention has been primarily focused on neurodegenerative diseases, while little or nothing has been done to differentiate physiology from pathology. The present study aimed to test diffusion tensor imaging (DTI) and functional MRI (fMRI) metrics to analyze physiological age-related changes in rats at myelin structure and activation level; findings were validated by ex vivo histology. The purpose is to find comparable biomarkers in rodents and humans to allow a reliable translation from pre-clinical to clinical settings. Data evidenced: i) a significantly higher cerebrospinal fluid volume in middle-aged and aged vs. young rats; ii) a progressive alteration of white matter; iii) a significant reduction of evoked activity in aged animals. These results partially mirror the age-related changes in humans and may represent a preliminary step to find reliable tools for a lifelong monitoring with a value for the clinical practice (e.g., to provide support to the early diagnosis of dementia in asymptomatic subjects).
2021
Brain aging
Diffusion tensor imaging
Stimulus-evoked functional magnetic resonance imaging
Structural MRI
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11562/1044696
Citazioni
  • ???jsp.display-item.citation.pmc??? 1
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 2
social impact