We introduce a novel approach for exploring image-based shape and material models registered with structured descriptive information fused in multi-scale overlays. We represent the objects of interest as a series of registered layers of image-based shape and material data. These layers are represented at different scales and can come out of a variety of pipelines. These layers can include both Reflectance Transformation Imaging representations, and spatially varying normal and Bidirectional Reflectance Distribution Function fields, possibly as a result of fusing multi-spectral data. An overlay image pyramid associates visual annotations to the various scales. The overlay pyramid of each layer is created at data preparation time by either one of the three subsequent methods: (1) by importing it from other pipelines, (2) by creating it with the simple annotation drawing toolkit available within the viewer, and (3) with external image editing tools. This makes it easier for the user to seamlessly draw annotations over the region of interest. At runtime, clients can access an annotated multi-layered dataset by a standard web server. Users can explore these datasets on a variety of devices; they range from small mobile devices to large-scale displays used in museum installations. On all these aforementioned platforms, JavaScript/WebGL2 clients running in browsers are fully capable of performing layer selection, interactive relighting, enhanced visualization, and annotation display. We address the problem of clutter by embedding interactive lenses. This focus-and-context-aware (multiple-layer) exploration tool supports exploration of more than one representation in a single view. That allows mixing and matching of presentation modes and annotation display. The capabilities of our approach are demonstrated on a variety of cultural heritage use-cases. That involves different kinds of annotated surface and material models.

Web-based Exploration of Annotated Multi-Layered Relightable Image Models

Giachetti, Andrea;
2021-01-01

Abstract

We introduce a novel approach for exploring image-based shape and material models registered with structured descriptive information fused in multi-scale overlays. We represent the objects of interest as a series of registered layers of image-based shape and material data. These layers are represented at different scales and can come out of a variety of pipelines. These layers can include both Reflectance Transformation Imaging representations, and spatially varying normal and Bidirectional Reflectance Distribution Function fields, possibly as a result of fusing multi-spectral data. An overlay image pyramid associates visual annotations to the various scales. The overlay pyramid of each layer is created at data preparation time by either one of the three subsequent methods: (1) by importing it from other pipelines, (2) by creating it with the simple annotation drawing toolkit available within the viewer, and (3) with external image editing tools. This makes it easier for the user to seamlessly draw annotations over the region of interest. At runtime, clients can access an annotated multi-layered dataset by a standard web server. Users can explore these datasets on a variety of devices; they range from small mobile devices to large-scale displays used in museum installations. On all these aforementioned platforms, JavaScript/WebGL2 clients running in browsers are fully capable of performing layer selection, interactive relighting, enhanced visualization, and annotation display. We address the problem of clutter by embedding interactive lenses. This focus-and-context-aware (multiple-layer) exploration tool supports exploration of more than one representation in a single view. That allows mixing and matching of presentation modes and annotation display. The capabilities of our approach are demonstrated on a variety of cultural heritage use-cases. That involves different kinds of annotated surface and material models.
2021
Visualization, Cultural Heritage, Multilayer
File in questo prodotto:
File Dimensione Formato  
jocch21.pdf

solo utenti autorizzati

Descrizione: paper
Tipologia: Versione dell'editore
Licenza: Accesso ristretto
Dimensione 1.6 MB
Formato Adobe PDF
1.6 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11562/1043407
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 12
  • ???jsp.display-item.citation.isi??? 8
social impact