This study aimed to analyze the correlations among weekly (w) acute workload (wAW), chronic workload (wCW), acute/chronic workload ratio (wACWR), training monotony (wTM), training strain (wTS), sleep quality (wSleep), delayed onset muscle soreness (wDOMS), fatigue (wFatigue), stress (wStress), and Hooper index (wHI) in pre-, early, mid-, and end-of-season. Twenty-one elite soccer players (age: 16.1 ± 0.2 years) were monitored weekly on training load and well-being for 36 weeks. Higher variability in wAW (39.2%), wFatigue (84.4%), wStress (174.3%), and wHI (76.3%) at the end-of-season were reported. At mid-season, higher variations in wSleep (59.8%), TM (57.6%), and TS (111.1%) were observed. Moderate to very large correlations wAW with wDOMS (r = 0.617, p = 0.007), wFatigue, wStress, and wHI were presented. Similarly, wCW reported a meaningful large association with wDOMS (r = 0.526, p < 0.001); moderate to very large associations with wFatigue (r = 0.649, p = 0.005), wStress, and wHI. Moreover, wTM presented a large correlation with wSleep (r = 0.515, p < 0.001); and a negatively small association with wStress (r = -0.426, p = 0.003). wTS showed a small to large correlation with wSleep (r = 0.400, p = 0.005) and wHI; also, a large correlation with wDOMS (r = 0.556, p = 0.028) and a moderate correlation with wFatigue (r = 0.343, p = 0.017). Wellness status may be considered a useful tool to provide determinant elite players' information to coaches and to identify important variations in training responses.
Association between training load and well-being measures in young soccer players during a season
Ardigò, Luca Paolo
2021-01-01
Abstract
This study aimed to analyze the correlations among weekly (w) acute workload (wAW), chronic workload (wCW), acute/chronic workload ratio (wACWR), training monotony (wTM), training strain (wTS), sleep quality (wSleep), delayed onset muscle soreness (wDOMS), fatigue (wFatigue), stress (wStress), and Hooper index (wHI) in pre-, early, mid-, and end-of-season. Twenty-one elite soccer players (age: 16.1 ± 0.2 years) were monitored weekly on training load and well-being for 36 weeks. Higher variability in wAW (39.2%), wFatigue (84.4%), wStress (174.3%), and wHI (76.3%) at the end-of-season were reported. At mid-season, higher variations in wSleep (59.8%), TM (57.6%), and TS (111.1%) were observed. Moderate to very large correlations wAW with wDOMS (r = 0.617, p = 0.007), wFatigue, wStress, and wHI were presented. Similarly, wCW reported a meaningful large association with wDOMS (r = 0.526, p < 0.001); moderate to very large associations with wFatigue (r = 0.649, p = 0.005), wStress, and wHI. Moreover, wTM presented a large correlation with wSleep (r = 0.515, p < 0.001); and a negatively small association with wStress (r = -0.426, p = 0.003). wTS showed a small to large correlation with wSleep (r = 0.400, p = 0.005) and wHI; also, a large correlation with wDOMS (r = 0.556, p = 0.028) and a moderate correlation with wFatigue (r = 0.343, p = 0.017). Wellness status may be considered a useful tool to provide determinant elite players' information to coaches and to identify important variations in training responses.File | Dimensione | Formato | |
---|---|---|---|
ijerph-18-04451-v2.pdf
accesso aperto
Descrizione: CC BY 4.0 publisher version
Tipologia:
Versione dell'editore
Licenza:
Creative commons
Dimensione
1.62 MB
Formato
Adobe PDF
|
1.62 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.