This study investigated the effect of area sizes (4 * 4, 6 * 6, and 8 * 8 m) and effort-pause ratios (free combat vs. 1:2) variation on the physiological and perceptive responses during taekwondo combats (Study 1). In a second study, the effects on physical performance of 8 weeks of small combat-based training added to regular taekwondo training were investigated (Study 2). In random order, 32 male taekwondo athletes performed six (i.e., two effort-to-pause ratios * three area sizes conditions) different 2-min taekwondo combats (Study 1). Thereafter (Study 2), they were randomly assigned to three experimental groups (4 * 4, 6 * 6, and 8 * 8 m) and an active control group (CG). Regarding Study 1, blood lactate concentration [La] before and after each combat, mean heart rate (HRmean) during each combat, and rating of perceived exertion (CR-10) immediately after each combat were assessed. Regarding Study 2, progressive specific taekwondo (PSTT) to estimate maximum oxygen consumption (VO2max), taekwondo-specific agility, and countermovement jump (CMJ) tests were administered before and after 8 weeks of training. Study 1 results showed that 4 * 4 m elicited lower HRmean values compared with 6 * 6 m (d = -0.42 [small], p = 0.030) and free combat induced higher values compared with the 1:2 ratio (d = 1.71 [large], p < 0.001). For [La]post, 4 * 4 m area size induced higher values than 6 * 6 m (d = 0.99 [moderate], p < 0.001) and 8 * 8 m (d = 0.89 [moderate], p < 0.001) and free combat induced higher values than 1:2 ratio (d = 0.69 [moderate], p < 0.001). Higher CR-10 scores were registered after free combat compared with 1:2 ratio (d = 0.44 [small], p = 0.007). For Study 2, VO2max increased after training [F (1, 56) =30.532, p < 0.001; post-hoc: d = 1.27 [large], p < 0.001] with higher values for 4 * 4 m compared with CG (d = 1.15 [moderate], p = 0.009). Agility performance improved after training [F (1, 56) = 4.419, p = 0.04; post-hoc: d = -0.46 [small], p = 0.04] and 4 * 4 m induced lower values in comparison with 6 * 6 m (d = -1.56 [large], p = 0.001) and CG (d = -0.77 [moderate], p = 0.049). No training type influenced CMJ performance. Smaller area size elicited contrasting results in terms of metabolic demand compared with larger sizes (i.e., lower HRmean but higher [La] and CR-10), whereas free combat induced variables' consistently higher values compared with imposed 1:2 ratio (Study 1). Taekwondo training is effective to improve VO2max and agility (Study 2), but small combat training modality should be investigated further.

Effects of adding small combat games to regular Taekwondo training on physiological and performance outcomes in male young athletes

Ardigò, Luca Paolo
2021-01-01

Abstract

This study investigated the effect of area sizes (4 * 4, 6 * 6, and 8 * 8 m) and effort-pause ratios (free combat vs. 1:2) variation on the physiological and perceptive responses during taekwondo combats (Study 1). In a second study, the effects on physical performance of 8 weeks of small combat-based training added to regular taekwondo training were investigated (Study 2). In random order, 32 male taekwondo athletes performed six (i.e., two effort-to-pause ratios * three area sizes conditions) different 2-min taekwondo combats (Study 1). Thereafter (Study 2), they were randomly assigned to three experimental groups (4 * 4, 6 * 6, and 8 * 8 m) and an active control group (CG). Regarding Study 1, blood lactate concentration [La] before and after each combat, mean heart rate (HRmean) during each combat, and rating of perceived exertion (CR-10) immediately after each combat were assessed. Regarding Study 2, progressive specific taekwondo (PSTT) to estimate maximum oxygen consumption (VO2max), taekwondo-specific agility, and countermovement jump (CMJ) tests were administered before and after 8 weeks of training. Study 1 results showed that 4 * 4 m elicited lower HRmean values compared with 6 * 6 m (d = -0.42 [small], p = 0.030) and free combat induced higher values compared with the 1:2 ratio (d = 1.71 [large], p < 0.001). For [La]post, 4 * 4 m area size induced higher values than 6 * 6 m (d = 0.99 [moderate], p < 0.001) and 8 * 8 m (d = 0.89 [moderate], p < 0.001) and free combat induced higher values than 1:2 ratio (d = 0.69 [moderate], p < 0.001). Higher CR-10 scores were registered after free combat compared with 1:2 ratio (d = 0.44 [small], p = 0.007). For Study 2, VO2max increased after training [F (1, 56) =30.532, p < 0.001; post-hoc: d = 1.27 [large], p < 0.001] with higher values for 4 * 4 m compared with CG (d = 1.15 [moderate], p = 0.009). Agility performance improved after training [F (1, 56) = 4.419, p = 0.04; post-hoc: d = -0.46 [small], p = 0.04] and 4 * 4 m induced lower values in comparison with 6 * 6 m (d = -1.56 [large], p = 0.001) and CG (d = -0.77 [moderate], p = 0.049). No training type influenced CMJ performance. Smaller area size elicited contrasting results in terms of metabolic demand compared with larger sizes (i.e., lower HRmean but higher [La] and CR-10), whereas free combat induced variables' consistently higher values compared with imposed 1:2 ratio (Study 1). Taekwondo training is effective to improve VO2max and agility (Study 2), but small combat training modality should be investigated further.
aerobic performance
agility
martial arts
physiological responses
training
File in questo prodotto:
File Dimensione Formato  
fphys-12-646666.pdf

accesso aperto

Descrizione: CC BY 4.0 publisher version
Tipologia: Versione dell'editore
Licenza: Creative commons
Dimensione 223.41 kB
Formato Adobe PDF
223.41 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11562/1042778
Citazioni
  • ???jsp.display-item.citation.pmc??? 5
  • Scopus 7
  • ???jsp.display-item.citation.isi??? 6
social impact