Metadata are fundamental for the indexing, browsing and retrieval of cultural heritage resources in repositories, digital libraries and catalogues. In order to be effectively exploited, metadata information has to meet some quality standards, typically defined in the collection usage guidelines. As manually checking the quality of metadata in a repository may not be affordable, especially in large collections, in this paper we specifically address the problem of automatically assessing the quality of metadata, focusing in particular on textual descriptions of cultural heritage items. We describe a novel approach based on machine learning that tackles this problem by framing it as a binary text classification task aimed at evaluating the accuracy of textual descriptions. We report our assessment of different classifiers using a new dataset that we developed, containing more than 100K descriptions. The dataset was extracted from different collections and domains from the Italian digital library “Cultura Italia” and was annotated with accuracy information in terms of compliance with the cataloguing guidelines. The results empirically confirm that our proposed approach can effectively support curators (F1 ∼ 0.85) in assessing the quality of the textual descriptions of the records in their collections and provide some insights into how training data, specifically their size and domain, can affect classification performance.
Automatically evaluating the quality of textual descriptions in cultural heritage records
	
	
	
		
		
		
		
		
	
	
	
	
	
	
	
	
		
		
		
		
		
			
			
			
		
		
		
		
			
			
				
				
					
					
					
					
						
						
							
							
						
					
				
				
				
				
				
				
				
				
				
				
				
			
			
		
			
			
				
				
					
					
					
					
						
							
						
						
					
				
				
				
				
				
				
				
				
				
				
				
			
			
		
			
			
				
				
					
					
					
					
						
						
							
							
						
					
				
				
				
				
				
				
				
				
				
				
				
			
			
		
		
		
		
	
Rospocher, Marco
;
	
		
		
	
			2021-01-01
Abstract
Metadata are fundamental for the indexing, browsing and retrieval of cultural heritage resources in repositories, digital libraries and catalogues. In order to be effectively exploited, metadata information has to meet some quality standards, typically defined in the collection usage guidelines. As manually checking the quality of metadata in a repository may not be affordable, especially in large collections, in this paper we specifically address the problem of automatically assessing the quality of metadata, focusing in particular on textual descriptions of cultural heritage items. We describe a novel approach based on machine learning that tackles this problem by framing it as a binary text classification task aimed at evaluating the accuracy of textual descriptions. We report our assessment of different classifiers using a new dataset that we developed, containing more than 100K descriptions. The dataset was extracted from different collections and domains from the Italian digital library “Cultura Italia” and was annotated with accuracy information in terms of compliance with the cataloguing guidelines. The results empirically confirm that our proposed approach can effectively support curators (F1 ∼ 0.85) in assessing the quality of the textual descriptions of the records in their collections and provide some insights into how training data, specifically their size and domain, can affect classification performance.| File | Dimensione | Formato | |
|---|---|---|---|
| 
									
										
										
										
										
											
												
												
												    
												
											
										
									
									
										
										
											Lorenzini2021_Article_AutomaticallyEvaluatingTheQual.pdf
										
																				
									
										
											 accesso aperto 
											Tipologia:
											Versione dell'editore
										 
									
									
									
									
										
											Licenza:
											
											
												Creative commons
												
												
													
													
													
												
												
											
										 
									
									
										Dimensione
										588.49 kB
									 
									
										Formato
										Adobe PDF
									 
										
										
								 | 
								588.49 kB | Adobe PDF | Visualizza/Apri | 
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.



