In legumes, pod shattering occurs when mature pods dehisce along the sutures, and detachment of the valves promotes seed dispersal. In Phaseolus vulgaris (L)., the major locus qPD5.1-Pv for pod indehiscence was identified recently. We developed a BC4/F4 introgression line population and narrowed the major locus down to a 22.5 kb region. Here, gene expression and a parallel histological analysis of dehiscent and indehiscent pods identified an AtMYB26 orthologue as the best candidate for loss of pod shattering, on a genomic region ~11 kb downstream of the highest associated peak. Based on mapping and expression data, we propose early and fine up-regulation of PvMYB26 in dehiscent pods. Detailed histological analysis establishes that pod indehiscence is associated with the lack of a functional abscission layer in the ventral sheath, and that the key anatomical modifications associated with pod shattering in common bean occur early during pod development. We finally propose that loss of pod shattering in legumes resulted from histological convergent evolution and that it is the result of selection at orthologous loci.

Pod indehiscence in common bean is associated with the fine regulation of PvMYB26

Rossato, Marzia;De Quattro, Concetta;Delledonne, Massimo;
2021-01-01

Abstract

In legumes, pod shattering occurs when mature pods dehisce along the sutures, and detachment of the valves promotes seed dispersal. In Phaseolus vulgaris (L)., the major locus qPD5.1-Pv for pod indehiscence was identified recently. We developed a BC4/F4 introgression line population and narrowed the major locus down to a 22.5 kb region. Here, gene expression and a parallel histological analysis of dehiscent and indehiscent pods identified an AtMYB26 orthologue as the best candidate for loss of pod shattering, on a genomic region ~11 kb downstream of the highest associated peak. Based on mapping and expression data, we propose early and fine up-regulation of PvMYB26 in dehiscent pods. Detailed histological analysis establishes that pod indehiscence is associated with the lack of a functional abscission layer in the ventral sheath, and that the key anatomical modifications associated with pod shattering in common bean occur early during pod development. We finally propose that loss of pod shattering in legumes resulted from histological convergent evolution and that it is the result of selection at orthologous loci.
2021
MYB26
Phaseolus vulgaris L
Common bean
convergent evolution
gene expression
genome-wide association study
introgression lines
pod anatomy
pod shattering
File in questo prodotto:
File Dimensione Formato  
2020 Di Vittori JEB.pdf

solo utenti autorizzati

Tipologia: Documento in Post-print
Licenza: Accesso ristretto
Dimensione 1.75 MB
Formato Adobe PDF
1.75 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11562/1041973
Citazioni
  • ???jsp.display-item.citation.pmc??? 18
  • Scopus 29
  • ???jsp.display-item.citation.isi??? 26
social impact