Objectives: Since universal vaccination is a pillar against coronavirus disease 2019 (COVID-19), monitoring anti-SARS-CoV-2 neutralizing antibodies is essential for deciphering post-vaccination immune response. Methods: Three healthcare workers received 30 μg BNT162b2 mRNA Covid-19 Pfizer Vaccine, followed by a second identical dose, 21 days afterwards. Venous blood was drawn at baseline and at serial intervals, up to 63 days afterwards, for assessing total immunoglobulins (Ig) anti-RBD (receptor binding domain), anti-S1/S2 and anti-RBD IgG, anti-RBD and anti-N/S1 IgM, and anti-S1 IgA. Results: All subjects were SARS-CoV-2 seronegative at baseline. Total Ig anti-RBD, anti-S1/S2 and anti-RBD IgG levels increased between 91 and 368 folds until 21 days after the first vaccine dose, then reached a plateau. The levels raised further after the second dose (by ∼30-, ∼8- and ∼8-fold, respectively), peaking at day 35, but then slightly declining and stabilizing ∼50 days after the first vaccine dose. Anti-S1 IgA levels increased between 7 and 11 days after the first dose, slightly declined before the second dose, after which levels augmented by ∼24-fold from baseline. The anti-RBD and anti-N/S1 IgM kinetics were similar to that of anti-S1 IgA, though displaying substantially weaker increases and modest peaks, only 4- to 7-fold higher than baseline. Highly significant inter-correlation was noted between total Ig anti-RBD, anti-S1/S2 and anti-RBD IgG (all r=0.99), whilst other anti-SARS-CoV-2 antibodies displayed lower, though still significant, correlations. Serum spike protein concentration was undetectable at all-time points. Conclusions: BNT162b2 mRNA vaccination generates a robust humoral immune response, especially involving anti-SARS-Cov-2 IgG and IgA, magnified by the second vaccine dose.

Comprehensive assessment of humoral response after Pfizer BNT162b2 mRNA Covid-19 vaccination: a three-case series

Danese, Elisa;Montagnana, Martina;Salvagno, Gian Luca;Peserico, Denise;Pighi, Laura;De Nitto, Simone;Porru, Stefano;Lippi, Giuseppe
2021-01-01

Abstract

Objectives: Since universal vaccination is a pillar against coronavirus disease 2019 (COVID-19), monitoring anti-SARS-CoV-2 neutralizing antibodies is essential for deciphering post-vaccination immune response. Methods: Three healthcare workers received 30 μg BNT162b2 mRNA Covid-19 Pfizer Vaccine, followed by a second identical dose, 21 days afterwards. Venous blood was drawn at baseline and at serial intervals, up to 63 days afterwards, for assessing total immunoglobulins (Ig) anti-RBD (receptor binding domain), anti-S1/S2 and anti-RBD IgG, anti-RBD and anti-N/S1 IgM, and anti-S1 IgA. Results: All subjects were SARS-CoV-2 seronegative at baseline. Total Ig anti-RBD, anti-S1/S2 and anti-RBD IgG levels increased between 91 and 368 folds until 21 days after the first vaccine dose, then reached a plateau. The levels raised further after the second dose (by ∼30-, ∼8- and ∼8-fold, respectively), peaking at day 35, but then slightly declining and stabilizing ∼50 days after the first vaccine dose. Anti-S1 IgA levels increased between 7 and 11 days after the first dose, slightly declined before the second dose, after which levels augmented by ∼24-fold from baseline. The anti-RBD and anti-N/S1 IgM kinetics were similar to that of anti-S1 IgA, though displaying substantially weaker increases and modest peaks, only 4- to 7-fold higher than baseline. Highly significant inter-correlation was noted between total Ig anti-RBD, anti-S1/S2 and anti-RBD IgG (all r=0.99), whilst other anti-SARS-CoV-2 antibodies displayed lower, though still significant, correlations. Serum spike protein concentration was undetectable at all-time points. Conclusions: BNT162b2 mRNA vaccination generates a robust humoral immune response, especially involving anti-SARS-Cov-2 IgG and IgA, magnified by the second vaccine dose.
2021
COVID-19, antibodies, coronavirus, immune response, vaccine
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11562/1041802
Citazioni
  • ???jsp.display-item.citation.pmc??? 20
  • Scopus 38
  • ???jsp.display-item.citation.isi??? 36
social impact