Search-based satisfiability procedures try to build a model of the input formula by simultaneously proposing candidate models and deriving new formulae implied by the input. Conflict-driven procedures perform nontrivial inferences only when resolving conflicts between formulae and assignments representing the candidate model. CDSAT (Conflict-Driven SATisfiability) is a method for conflict-driven reasoning in unions of theories. It combines solvers for individual theories as theory modules within a solver for the union of the theories. In this article, we add lemma learning to CDSAT; we show that theory modules for several theories of practical interest fulfill the requirements for completeness and termination of CDSAT; and we present two ways to enrich CDSAT with proof generation. First, we present a proof-carrying CDSAT transition system that produces proof objects in memory accommodating multiple proof formats. Alternatively, we apply to CDSAT the LCF approach to proofs from interactive theorem proving, by defining a kernel of reasoning primitives that guarantees that CDSAT proofs are correct by construction.
Conflict-driven satisfiability for theory combination: lemmas, modules, and proofs
Maria Paola Bonacina
;
2022-01-01
Abstract
Search-based satisfiability procedures try to build a model of the input formula by simultaneously proposing candidate models and deriving new formulae implied by the input. Conflict-driven procedures perform nontrivial inferences only when resolving conflicts between formulae and assignments representing the candidate model. CDSAT (Conflict-Driven SATisfiability) is a method for conflict-driven reasoning in unions of theories. It combines solvers for individual theories as theory modules within a solver for the union of the theories. In this article, we add lemma learning to CDSAT; we show that theory modules for several theories of practical interest fulfill the requirements for completeness and termination of CDSAT; and we present two ways to enrich CDSAT with proof generation. First, we present a proof-carrying CDSAT transition system that produces proof objects in memory accommodating multiple proof formats. Alternatively, we apply to CDSAT the LCF approach to proofs from interactive theorem proving, by defining a kernel of reasoning primitives that guarantees that CDSAT proofs are correct by construction.File | Dimensione | Formato | |
---|---|---|---|
JAR2022CDSATlemmasModulesProofs.pdf
accesso aperto
Descrizione: Articolo principale
Tipologia:
Documento in Post-print
Licenza:
Creative commons
Dimensione
736.33 kB
Formato
Adobe PDF
|
736.33 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.